Timelike geodesic curves for two-dimensional metric

  • Thread starter Thread starter Fisherlam
  • Start date Start date
  • Tags Tags
    Curves Geodesic
Fisherlam
Messages
10
Reaction score
0
Homework Statement
For the two-dimensional metric ##ds^2 = [dx^2 + c^2dt^2] /(\alpha t^{-2})##, with ##\alpha## being a constant of appropriate dimensions, show that $$\frac{dx/dt}{\sqrt{1-(dx/dt)^2}}$$ is constant and hence, or otherwise, find all timelike geodesic curves.
Relevant Equations
$$L=g_{ab}\dot{x}^a\dot{x}^b $$ $$\frac{\partial L}{\partial x}=\frac{\partial }{\partial u}\left(\frac{\partial L}{\partial \dot{x}}\right) $$
Using EL equation, $$L=\left(\frac{t^2}{\alpha}\dot{x}^2-\frac{c^2t^2}{\alpha}\dot{t}^2\right)^{0.5} \Longrightarrow \mathrm{constant} =\left(\dot{x}^2 -c^2 \dot{t}^2\right)^{-0.5} \left(\frac{t^2}{\alpha}\right)^{0.5} \dot{x}$$.

Get another equation from the metric: $$ds^2=-\frac{c^2t^2}\alpha dt^2+\frac{t^2}\alpha dx^2=c^2d\tau^2\quad\Longrightarrow\quad-\frac{c^2t^2}\alpha t^2+\frac{t^2}\alpha\dot{x}^2=c^2\quad\Longrightarrow\quad\frac{t^2}\alpha=\frac{c^2}{\dot{x}^2-c^2\dot{t}^2}$$

Substitution and set ##c=1##: $$\mathrm{constant}=\left(\dot{x}^2-c^2\dot{t}^2\right)^{-0.5}\left(\frac{t^2}\alpha\right)^{0.5}\dot{x}=\frac{c\dot{x}}{\dot{x}^2-c^2\dot{t}^2}=\frac{\dot{x}}{\dot{x}^2-\dot{t}^2}=\cdots?$$

I think I am close but clearly missing something...
 
Last edited:
Physics news on Phys.org
I've done some digging and if this comes from the Cambridge Part II Physics 2021 past paper, then this is actually a typo. They actually wanted you to find the first conserved quantity which you've obtained from the E-L equations.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top