Timelike geodesic curves for two-dimensional metric

  • Thread starter Thread starter Fisherlam
  • Start date Start date
  • Tags Tags
    Curves Geodesic
Fisherlam
Messages
10
Reaction score
0
Homework Statement
For the two-dimensional metric ##ds^2 = [dx^2 + c^2dt^2] /(\alpha t^{-2})##, with ##\alpha## being a constant of appropriate dimensions, show that $$\frac{dx/dt}{\sqrt{1-(dx/dt)^2}}$$ is constant and hence, or otherwise, find all timelike geodesic curves.
Relevant Equations
$$L=g_{ab}\dot{x}^a\dot{x}^b $$ $$\frac{\partial L}{\partial x}=\frac{\partial }{\partial u}\left(\frac{\partial L}{\partial \dot{x}}\right) $$
Using EL equation, $$L=\left(\frac{t^2}{\alpha}\dot{x}^2-\frac{c^2t^2}{\alpha}\dot{t}^2\right)^{0.5} \Longrightarrow \mathrm{constant} =\left(\dot{x}^2 -c^2 \dot{t}^2\right)^{-0.5} \left(\frac{t^2}{\alpha}\right)^{0.5} \dot{x}$$.

Get another equation from the metric: $$ds^2=-\frac{c^2t^2}\alpha dt^2+\frac{t^2}\alpha dx^2=c^2d\tau^2\quad\Longrightarrow\quad-\frac{c^2t^2}\alpha t^2+\frac{t^2}\alpha\dot{x}^2=c^2\quad\Longrightarrow\quad\frac{t^2}\alpha=\frac{c^2}{\dot{x}^2-c^2\dot{t}^2}$$

Substitution and set ##c=1##: $$\mathrm{constant}=\left(\dot{x}^2-c^2\dot{t}^2\right)^{-0.5}\left(\frac{t^2}\alpha\right)^{0.5}\dot{x}=\frac{c\dot{x}}{\dot{x}^2-c^2\dot{t}^2}=\frac{\dot{x}}{\dot{x}^2-\dot{t}^2}=\cdots?$$

I think I am close but clearly missing something...
 
Last edited:
Physics news on Phys.org
I've done some digging and if this comes from the Cambridge Part II Physics 2021 past paper, then this is actually a typo. They actually wanted you to find the first conserved quantity which you've obtained from the E-L equations.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top