Timelike geodesic curves for two-dimensional metric

  • Thread starter Thread starter Fisherlam
  • Start date Start date
  • Tags Tags
    Curves Geodesic
Fisherlam
Messages
10
Reaction score
0
Homework Statement
For the two-dimensional metric ##ds^2 = [dx^2 + c^2dt^2] /(\alpha t^{-2})##, with ##\alpha## being a constant of appropriate dimensions, show that $$\frac{dx/dt}{\sqrt{1-(dx/dt)^2}}$$ is constant and hence, or otherwise, find all timelike geodesic curves.
Relevant Equations
$$L=g_{ab}\dot{x}^a\dot{x}^b $$ $$\frac{\partial L}{\partial x}=\frac{\partial }{\partial u}\left(\frac{\partial L}{\partial \dot{x}}\right) $$
Using EL equation, $$L=\left(\frac{t^2}{\alpha}\dot{x}^2-\frac{c^2t^2}{\alpha}\dot{t}^2\right)^{0.5} \Longrightarrow \mathrm{constant} =\left(\dot{x}^2 -c^2 \dot{t}^2\right)^{-0.5} \left(\frac{t^2}{\alpha}\right)^{0.5} \dot{x}$$.

Get another equation from the metric: $$ds^2=-\frac{c^2t^2}\alpha dt^2+\frac{t^2}\alpha dx^2=c^2d\tau^2\quad\Longrightarrow\quad-\frac{c^2t^2}\alpha t^2+\frac{t^2}\alpha\dot{x}^2=c^2\quad\Longrightarrow\quad\frac{t^2}\alpha=\frac{c^2}{\dot{x}^2-c^2\dot{t}^2}$$

Substitution and set ##c=1##: $$\mathrm{constant}=\left(\dot{x}^2-c^2\dot{t}^2\right)^{-0.5}\left(\frac{t^2}\alpha\right)^{0.5}\dot{x}=\frac{c\dot{x}}{\dot{x}^2-c^2\dot{t}^2}=\frac{\dot{x}}{\dot{x}^2-\dot{t}^2}=\cdots?$$

I think I am close but clearly missing something...
 
Last edited:
Physics news on Phys.org
I've done some digging and if this comes from the Cambridge Part II Physics 2021 past paper, then this is actually a typo. They actually wanted you to find the first conserved quantity which you've obtained from the E-L equations.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top