Find the values of A, B, and C such that the action is a minimum

In summary, the conversation discusses finding the values of A, B, and C in the equation ##x(t) = A + B t + C t^2## in order to minimize the action of a particle subjected to a potential function. The participant suggests using Lagrangian rather than Hamilton and assumes there is no frictional force. However, their approach of integrating ##\ddot{x}## and differentiating ##x(t)## does not follow the given problem parameters and does not result in the correct values for A, B, and C. The correct approach should involve computing the action and minimizing it, taking into account the given conditions of the particle's motion.
  • #1
Istiak
158
12
Homework Statement
A particle is subjected to the potential V (x) = −F x, where F is a constant. The
particle travels from x = 0 to x = a in a time interval t0 . Assume the motion of the
particle can be expressed in the form ##x(t) = A + B t + C t^2## . Find the values of A, B,
and C such that the action is a minimum.
Relevant Equations
Lagrangian
> A particle is subjected to the potential V (x) = −F x, where F is a constant. The
particle travels from x = 0 to x = a in a time interval t0 . Assume the motion of the
particle can be expressed in the form ##x(t) = A + B t + C t^2## . Find the values of A, B,
and C such that the action is a minimum.

I was thinking it can solved using Lagrangian rather than Hamilton. There's no frictional force.

$$L=\frac{1}{2}m\dot{x}^2+Fx$$
$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}})-\frac{\partial L}{\partial x}=0$$
$$m\ddot{x}=F$$
$$\ddot{x}=\frac{F}{m}$$
Differentiate ##x(t)## twice. $$2C=\frac{F}{m}=>C=\frac{F}{2m}$$

For finding B I was thinking to integrate ##\ddot{x}## once. $$\dot{x}=\int \ddot{x} \mathrm dt$$
$$=\ddot{x}t$$
initial position is 0 so, not writing constant.

$$\dot{x}=\frac{F}{m}$$
Differentiate ##x(t)## once.
$$B+2Ct=\frac{F}{m}$$
$$B=\frac{F}{m}-\frac{2Ft}{2m}$$
$$=-\frac{Ft}{2m}$$

Again, going to integrate ##\ddot{x}## twice.
$$x=\int \int \ddot{x} dt dt$$
$$=\frac{\ddot{x}t^2}{2}$$

initial velocity and initial position is 0.

$$x=\frac{Ft^2}{2m}$$
$$A+Bt+Ct^2=\frac{Ft^2}{2m}$$
$$A=\frac{Ft^2+Ft-F}{2m}$$

According to my, I think that C is the minimum (I think B is cause, B is negative; negative is less than positive). And, A is maximum. Did I do any mistake?
 
  • Wow
Likes PeroK
Physics news on Phys.org
  • #2
Where to begin?

First, you were supposed to compute the action and minimise it.

Everything you did from integrating ##\ddot x## got pretty wild. You definitely cannot integrate ##\ddot x## as though it were constant.

##A, B, C## were supposed to be constants, not functions of ##t##.
 
  • #3
PeroK said:
Where to begin?

First, you were supposed to compute the action and minimise it.

Everything you did from integrating ##\ddot x## got pretty wild. You definitely cannot integrate ##\ddot x## as though it were constant.

##A, B, C## were supposed to be constants, not functions of ##t##.
Umm, I had found ##F=m\ddot{x}## 🤔. couldn't get you... then started differentiating ##x## function.
 
  • #4
Istiakshovon said:
Umm, I had found ##F=m\ddot{x}## 🤔. couldn't get you... then started differentiating ##x## function.
You ignored most things in the question:

It asked you to minimise the action; it told you the particle moved from ##0## to ##a## in time ##t_0##; it gave you the equation of the trajectory.

You didn't do the problem that was asked.
 

Similar threads

Back
Top