To find the angle between the ground and rods in limiting friction

Click For Summary
SUMMARY

The discussion focuses on calculating the angle (Ѳ) between the ground and rods in a system experiencing limiting friction. The initial approach involved resolving forces and moments for two rods with weights 3W and W, leading to the conclusion that R1 equals R2 under specific conditions. However, the user struggled to derive the expected angle of 45 degrees. A simpler method was later proposed, which involved taking moments about points A and C, resulting in R2 = 3W/2 and R1 = 5W/2, ultimately confirming that Ѳ = 45 degrees.

PREREQUISITES
  • Understanding of static equilibrium and limiting friction
  • Knowledge of resolving forces and moments in mechanics
  • Familiarity with trigonometric functions, particularly tangent
  • Ability to analyze systems of forces in engineering contexts
NEXT STEPS
  • Study the principles of static equilibrium in mechanical systems
  • Learn about the application of moments in determining forces
  • Explore advanced topics in friction, including Coulomb's law of friction
  • Investigate different methods for solving mechanics problems, such as free body diagrams
USEFUL FOR

Students and professionals in engineering, particularly those focusing on mechanics and structural analysis, will benefit from this discussion. It is also valuable for anyone looking to deepen their understanding of static friction and equilibrium in physical systems.

gnits
Messages
137
Reaction score
46
Homework Statement
To find the angle between the ground and rods when in limiting friction
Relevant Equations
force balancing and moments
Could I please ask for help with the following:

RodsQ.JPG


Here's my diagram:

rods.png

The forces at the hinge (green) are internal forces.

For the whole system resolving vertically gives:

R1 + R2 = 4W

and horizontally gives:

F1 = F2

For the rod of weight 3W only, taking moments about B gives:

F1 * L * sin(Ѳ) + 3W * (1/2) * L * cos(Ѳ) = R1 * L * cos(Ѳ)

When in the limiting situation I can replace F1 with (2/3) * R1 and rearrange to give:

(2/3) * tan(Ѳ) = 1 - ( 3W / (2 * R1) )

For the rod of weight W only, taking moments about B gives:

R2 * L * cos(Ѳ) = F2 * L * sin(Ѳ) + W * (L/2) * cos(Ѳ)

When in the limiting situation I can replace F2 with (2/3) * R2 and rearrange to give:

(2/3) * tan(Ѳ) = 1 - ( W / (2 * R2) )

Now, and maybe this is bad reasoning?, we always have that F1 = F2, so in the limiting situation when either F1 = (2/3) * R1 or F2 = (2/3) * R2 then we will have that R1 = R2.

So, from the above equations, replacing R2 with R1, I will have:

For rod of weight 3W:

(2/3) * tan(Ѳ) = 1 - ( 3W / (2 * R1) )

and for rod of weight W:

(2/3) * tan(Ѳ) = 1 - ( W / (2 * R1) )

And the latter is the larger value and so the latter has the larger value of Ѳ in the limiting case and so rod BC will be the one which slips.

This agrees with the book answer.

However, for the next part, determining the angle, I do not get the book answer of 45 degrees.

Here I equate my two equations to give:

1 - (3*W) / (2 * R1) = 1 - W / (2 * R2)

which gives:

R1 = 3 * R2

and using R1 = 4W - R2 leads to R2 = W

Which, if put back into the expression for (2/3) tan(Ѳ) above, leads to tan(Ѳ) = 3/4

which does not imply that Ѳ = 45 degrees.

Where did I go wrong?

Thanks for any help.
 
Physics news on Phys.org
gnits said:
then we will have that R1 = R2.
This is only the case if both limiting situations apply at the same time.
But it is very likely they do not.

##\ ##
 
Thanks for your reply. I have solved it now by starting over with another, less complicated route.
 
  • Like
Likes   Reactions: Lnewqban and BvU
gnits said:
Thanks for your reply. I have solved it now by starting over with another, less complicated route.
Could you show us that less complicated route?
 
Sure. My simpler method was to consider the system as a whole and take moments about A and then about C, these lead straight to R2 = 3W/2 and R1 = 5W/2. Then, looking at the conditions for no slipping at A and then C leads to F1 <= 5W/3 and F2 <= W and so slipping will occur at C as frictional forces will reach W before 5W/2. Finally, considering the rod of weight W only, take moments about B and this leads to 2 * F2 * tan(Ѳ) = 2 * R2 - W and in the limiting case we know F2 and R2 in terms of W and so can solve for Ѳ and this gives Ѳ = 45 degrees. My original method, even when corrected for the problem that was pointed out, still had ambiguities related to mixing of limiting cases at A and C, this new method does not suffer from this.
 
  • Like
Likes   Reactions: Lnewqban
gnits said:
Sure. My simpler method was to consider the system as a whole and take moments about A and then about C, these lead straight to R2 = 3W/2 and R1 = 5W/2. .
gnits said:
. My original method, even when corrected for the problem that was pointed out, still had ambiguities related to mixing of limiting cases at A and C, this new method does not suffer from this.
Thank you very much, gnits.
 

Similar threads

Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
2K
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
3K
Replies
22
Views
2K