To find the forces acting in a system in equilibrium

Click For Summary
SUMMARY

The discussion focuses on resolving forces in a system in equilibrium involving a ring and two bars, AB and BC. The user initially miscalculated the horizontal force (F) acting on the ring, arriving at F = W * tan(Ө) instead of the correct F = (1/2) * W * tan(Ө). The error was identified as neglecting the torque produced by the weight of bar BC when analyzing the forces acting on the ring. By considering the combined system of the rod BC and the ring, the user correctly accounted for the torque, leading to the resolution of the problem.

PREREQUISITES
  • Understanding of static equilibrium principles
  • Familiarity with torque calculations in mechanics
  • Knowledge of free body diagrams
  • Basic trigonometry related to angles and forces
NEXT STEPS
  • Study the principles of static equilibrium in mechanical systems
  • Learn about torque and its applications in physics
  • Explore free body diagram techniques for complex systems
  • Investigate the effects of angle on mechanical advantage in systems
USEFUL FOR

Students and professionals in mechanical engineering, physics enthusiasts, and anyone studying static equilibrium and torque in mechanical systems.

gnits
Messages
137
Reaction score
46
Homework Statement
To find the forces acting in a system in equilibrium
Relevant Equations
moments
Could I please ask where I have gone wrong with my reasoning in the following question:

nowp.JPG


The answers in given in the book are:

(1/2)W tan(Ө)
W
vertically
(1/2)W tan(Ө) horizontally

Here is my diagram:

now.png

Considering the system as a whole:

(In the text below "Ya" and "Xa" are the forces at the hinge at A)

Resolving vertically gives:

Ya + R = 2W + ω (call this "equation 1")

Resolving horizontally gives:

F = Xa (this agrees with the book answer)

Taking moments about C gives:

W * a sin(Ө) + W * 3a * sin(Ө) = Ya * 4a * sin(Ө)

which gives:

Ya = W (this agrees with the book answer)

And so from "equation 1" we have that R = W + ω (call this "equation 2")

Now, considering the ring alone and taking moments about B gives:

R * 2a * sin(Ө) = ω * 2a * sin(Ө) + F * 2a * cos(Ө)

which gives:

R * tan(Ө) = ω * tan(Ө) + F

So using "equation 2" gives:

F = W * tan(Ө)

But book answer is F = (1/2) * W * tan(Ө)

Where have I reasoned wrongly?

Thanks for any help.
 
Physics news on Phys.org
gnits said:
Now, considering the ring alone and taking moments about B gives:

R * 2a * sin(Ө) = ω * 2a * sin(Ө) + F * 2a * cos(Ө)
You have forgotten the moment (torque) produced by BC's weight.
 
Steve4Physics said:
You have forgotten the moment (torque) produced by BC's weight.
Thanks very much for that. Indeed, if I include the torque produced by BC's weight everything works out.

This torque is given by W * a sin(Ө)I guess I am having trouble justifying to myself, why, when I am considering forces on the ring only, I need to include W due to the weight of BC in this way. If I imagine a diagram with the ring only then, if anything, I would label the force on the ring due to BC as being an arrow pointing vertically downwards from the ring of magnitude W. But then it's moment about B would be be

W * 2a * sin(Ө)

not W * a * sin(Ө) as I use above to get the right answer?

How am I thinking of this wrongly?

*EDIT* I think that my confusion is one of visualization. I think that, "mentally", I should be thinking in terms of considering "the rod BC and the ring" as the entity which I am considering in isolation, rather than just "the ring", then indeed I would use W * a sin(Ө)
 
Last edited:
You have a mechanism that would tend to relocate itself to the point of lowest potential energy, where bars AB and BC would become both vertical if nothing would be holding ring C in its position.
AB would simply rotate, while BC must rotate and move, while following the circular trajectory of point B on one end and a horizontal trajectory on the other end.
 
Thanks all for the replies. They have helped me to solve to problem.
 
  • Like
Likes   Reactions: Steve4Physics and Lnewqban
gnits said:
Thanks all for the replies. They have helped me to solve to problem.
As the angle between the bars increases, the magnitude of the horizontal reaction at pivot A and the necessary friction force at ring C dramatically increases.
At 180 degrees, the value of those forces will be infinite.

Please, see this practical application of this principle of increasing mechanical advantage:
https://roperescuetraining.com/physics_angles.php

You are welcome. :)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
855
Replies
11
Views
2K
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K