- #1

- 22

- 0

## Main Question or Discussion Point

Please help somebody on this problem...

When we topologically classify the defects in ordered media, we consider the character of the fundamental group of the associated order parameter space. To construct those groups, we circumscribe the line defects by circles and the point defects by spheres.

My question is what is done for a surface (possibly infinite) defect, say domain walls. My query primary concerns crystal lattices. I want to characterize the essential defects in solid crystals--for dislocation and interstitial/vacancy, it is straightforward. But what to be done in case of grain/phase boundary?

When we topologically classify the defects in ordered media, we consider the character of the fundamental group of the associated order parameter space. To construct those groups, we circumscribe the line defects by circles and the point defects by spheres.

My question is what is done for a surface (possibly infinite) defect, say domain walls. My query primary concerns crystal lattices. I want to characterize the essential defects in solid crystals--for dislocation and interstitial/vacancy, it is straightforward. But what to be done in case of grain/phase boundary?