Which Introductory Books Are Best for Studying Topological Superconductors?

Click For Summary
SUMMARY

This discussion focuses on recommended introductory resources for studying Topological Superconductors, specifically the Kitaev model. Key resources include the review by Hasan and Kane on topological insulators (arXiv:1002.3895), a theoretical introduction (arXiv:1608.03395), and Kitaev's original paper on the 1D spinless fermion chain (arXiv:cond-mat/0010440). Participants emphasize the importance of a solid understanding of second quantization and suggest practical projects involving Hamiltonians, Fourier transforms, and numerical solutions using MATLAB.

PREREQUISITES
  • Second quantization in quantum mechanics
  • Understanding of Hamiltonians and dispersion relations
  • Familiarity with numerical methods in MATLAB
  • Basic knowledge of topology and Chern numbers
NEXT STEPS
  • Read the original Kitaev paper (arXiv:cond-mat/0010440) for foundational concepts
  • Learn about the Bogoliubov transformation and its applications in quantum mechanics
  • Explore the calculation of the Chern number as suggested in the review (arXiv:1202.1293)
  • Implement numerical solutions for finite chains using MATLAB to analyze eigenstates
USEFUL FOR

Researchers, graduate students, and physicists interested in condensed matter physics, particularly those focusing on topological superconductors and quantum mechanics.

shiraz
Dear All
I am trying to study Topological superconductors but i have no idea about it. Can anyone suggest me an introductory book to start with.
 
Physics news on Phys.org
A great place to start is a review by Hasan and Kane on topological insulators:

https://arxiv.org/pdf/1002.3895.pdf

A more theory based introduction can be found here:

https://arxiv.org/pdf/1608.03395.pdf

If you're looking for interesting introductions, the 1D spinless fermion chain with p-wave superconductivity by Kitaev is a good model to see the dynamics. A good professor to look at did some notes here:

https://arxiv.org/pdf/1206.1736.pdf

And you can look at all the references those papers cite to continue down the rabbit hole.
 
  • Like
Likes   Reactions: Demystifier, shiraz and atyy
DeathbyGreen said:
A great place to start is a review by Hasan and Kane on topological insulators:

https://arxiv.org/pdf/1002.3895.pdf

A more theory based introduction can be found here:

https://arxiv.org/pdf/1608.03395.pdf

If you're looking for interesting introductions, the 1D spinless fermion chain with p-wave superconductivity by Kitaev is a good model to see the dynamics. A good professor to look at did some notes here:

https://arxiv.org/pdf/1206.1736.pdf

And you can look at all the references those papers cite to continue down the rabbit hole.
Thank you a lot. In fact my Goal is to understand Kitaev model. But i am afraid if i should have some basics before start reading. I know Quantum Mechanics, second quantization... But i am wondering if i need further things.
Thank you a lot for your help
 
shiraz said:
Thank you a lot. In fact my Goal is to understand Kitaev model. But i am afraid if i should have some basics before start reading. I know Quantum Mechanics, second quantization... But i am wondering if i need further things.
Thank you a lot for your help

No problem! As long as you have a background with some second quantization you should be fine. If you really want to understand the kitaev model, I would start with the original paper:

https://arxiv.org/abs/cond-mat/0010440

Then, maybe work through a little project:

1. start with the real space Hamiltonian and Fourier transform into momentum space, using periodic boundary conditions in x and y; perform a Bogoliubov transformation and diagonalize to get an expression for the dispersion relation. Then try to find:
- The spectrum E(k)
- The density of states D(E)
- The wavefunctions (eigenvectors)
3. Now make the chain finite (use the real space model) and solve numerically (simple MATLAB eig(H) type function will do the trick). You should find
- The spectrum E(k)
- The density of states D(E)
- The wavefunctions
4. Reflect on the comparison between the two cases.
5. Also take a look at the review

https://arxiv.org/pdf/1202.1293.pdf

and use it's suggestions to calculate the Chern number, which will give you some insight into topology. The best way to learn this stuff is to really push through the math!
 
  • Like
Likes   Reactions: shiraz
DeathbyGreen said:
No problem! As long as you have a background with some second quantization you should be fine. If you really want to understand the kitaev model, I would start with the original paper:

https://arxiv.org/abs/cond-mat/0010440

Then, maybe work through a little project:

1. start with the real space Hamiltonian and Fourier transform into momentum space, using periodic boundary conditions in x and y; perform a Bogoliubov transformation and diagonalize to get an expression for the dispersion relation. Then try to find:
- The spectrum E(k)
- The density of states D(E)
- The wavefunctions (eigenvectors)
3. Now make the chain finite (use the real space model) and solve numerically (simple MATLAB eig(H) type function will do the trick). You should find
- The spectrum E(k)
- The density of states D(E)
- The wavefunctions
4. Reflect on the comparison between the two cases.
5. Also take a look at the review

https://arxiv.org/pdf/1202.1293.pdf

and use it's suggestions to calculate the Chern number, which will give you some insight into topology. The best way to learn this stuff is to really push through the math!
Really Thank you. I will do that sure. Good luck in your research
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 47 ·
2
Replies
47
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 23 ·
Replies
23
Views
6K
  • · Replies 7 ·
Replies
7
Views
3K