Torque imposed by the Moon and Sun on the Earth given its precession

Click For Summary

Homework Help Overview

The discussion revolves around calculating the torque imposed by the Moon and Sun on the Earth in relation to its precession, with a focus on the physics of rotational motion and angular momentum. The subject area includes concepts from classical mechanics, particularly the dynamics of rigid bodies and gyroscopic motion.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the moment of inertia of the Earth and its angular velocity, attempting to derive the torque related to precession. There are questions about the clarity of the algebraic representation and the use of numerical values in the calculations. Some participants suggest that the formula for precession involves a cross product, prompting a reevaluation of the equations used.

Discussion Status

The discussion is ongoing, with participants providing feedback on the clarity of the algebraic expressions and questioning the arithmetic involved in the calculations. There is a recognition of the complexity of the problem, and some guidance has been offered regarding the representation of multiplication in equations.

Contextual Notes

Participants note the challenge of conveying reasoning through numerical calculations and the need for clearer algebraic expressions. There is also mention of the large scale of the values involved in the context of space, which may complicate understanding.

ago01
Messages
46
Reaction score
8
Homework Statement
What torque, in Nm, must be applied by the sun and moon to create the observed precession of 26,000 years?
Relevant Equations
Angular momentum, precession, torque
From the givens:

Approximate Earth as a sphere:

##I_e = \frac{2}{5}MR^2 = \frac{2}{5}(5.97x10^{24})(6.371x10^6)^2 = 9.69x10^{37} kg*m^2##

##\omega_e = 7.29x10^{-5} \frac{rad}{s}##

To calculate the rate of precession of the disk the Earth precesses around (1 revolution every 26,000 years):

##\frac{1}{8.199x10^{11} s} * 2*\pi = 5.15x10^{-10} \frac{rad}{s}##

Given the equation of angular precession: ##\omega_p = \frac{rMg}{I\omega}##

##rMg = I\omega\omega_p = (9.69x10^{37})(7.29x10^{-5})(5.15x10^{-10}) = 3.638 × 10^{24} N*m##

But it appears this answer is incorrect. I had thought that since in deriving ##\omega_p## we cancel ##\theta## the angle between the planets wouldn't matter and ##rMg## would be our torque. However, this seems not to be the case.

What have I done wrong?
 
Physics news on Phys.org
It's very hard to follow your reasoning when it's all in numbers. Please post a purely algebraic version.
 
haruspex said:
It's very hard to follow your reasoning when it's all in numbers. Please post a purely algebraic version.

To be honest I'm not sure what else I can do to make it more algebraic. But I'll take a shot.

Moment of inertia of the Earth (approximated as a solid sphere):

##I_e = \frac{2}{5}MR^2 = \frac{2}{5}(5.97x10^{24})(6.371x10^6)^2 = 9.69x10^{37} kg*m^2##

I used the mass ##5.97x10^{24} kg## and the radius ##6.371x10^6m## from reference.

Angular velocity of the Earth about it's axis (some unit conversions):

The Earth completes 1 rotation about it's axis in 24 hours. So to solve for ##\omega_e## I get:

##\omega_e = \frac{1}{24 hours} * \frac{1}{60 min} * \frac{1}{60 s} * 2\pi = 7.29x10^{-5} \frac{rad}{s}##


From the givens the Earth precesses once every 26,000 years. So this is just another conversion.

Precession of the Earth in seconds (some unit conversion):

##\frac{1}{8.199x10^{11} s} * 2*\pi = 5.15x10^{-10} \frac{rad}{s}##

Where ##8.199x10^{11} s## is 26,000 years in seconds.

Calculating the torque:

From my book the precession angular velocity is equal to (treating the Earth as a gyroscope):

##\omega_p = \frac{rMg}{I\omega_e}##

It's derived by:

##T = rMg\sin{\theta}##
##dL = rMgsin{\theta}dt##
##d\phi = \frac{dL}{Lsin{\theta}} = \frac{rMgsin{\theta}}{Lsin{\theta}}dt = \frac{rMg}{L}dt##

Since ##\omega_p = \frac{d\phi}{dt}##

##\omega_p = \frac{rMg}{L}##

or

##\omega_p = \frac{rMg}{I\omega_e}##So, I was lead to believe that the numerator represents a torque and I could solve for it. So moving some variables around:

##rMg = I\omega_e\omega_p##

and

##rMg = I\omega\omega_p = (9.69x10^{37})(7.29x10^{-5})(5.15x10^{-10}) = 3.638 × 10^{24} N*m##

The values of which I derived above. Hope this helps understand my reasoning. It's really hard to determine if this number even makes sense as everything in space is quite large.
 
ago01 said:
To be honest I'm not sure what else I can do to make it more algebraic.
You don’t insert any numbers until you have the very final algebraic expression.

Edit: I also suggest using \times or \cdot for the multiplication in your TeX code instead of the variable x.
 
Orodruin said:
You don’t insert any numbers until you have the very final algebraic expression.

Edit: I also suggest using \times or \cdot for the multiplication in your TeX code instead of the variable x.

That's usually what I do. However, the only algebra I did really was the last part where I manipulated the equation (as I did in the original answer). That is why I was confused. The rest was just unit conversions that, admittedly, could be made more clear. Which I tried to do in my response.
 
ago01 said:
treating the Earth as a gyroscope
The formula for precession involves a cross product. How might that affect your equations?
 
There is a mistake in your arithmetic. I calculate the rate of precession as 7.66e-12 rad/s, not 5.15e-10.
 

Similar threads

Replies
15
Views
2K
Replies
3
Views
2K
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
7K
Replies
33
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
2
Views
3K