- #1
Jules575
- 2
- 0
- TL;DR Summary
- Struggling to reconcile Newton's second law for linear and rotational acceleration. How are these related for wheels accelerating (linear) a vehicle?
I'm struggling to understand something basic here. If I have a just a wheel, with mass 10kg, and radius 0.25m, and I specify that the CG is accelerating linearly at 1ms-2, how do I calculate the force needed to do this? Using F = ma gives 10N, but using this value for torque calculation on the wheel gives
T = 10×0.25 = 2.5Nm
α = T/I where I = 0.5×10kg×(0.25m)2 = 0.3125 kgm2
α = 2.5/0.3125 = 8 rads-2
and lastly, the linear acceleration of the CG of the wheel is given by
a = α×r = 8×0.25 = 2ms-2
This is double what I needed, why does using the force from Newton's second law for linear motion not agree with the law for rotational motion?
Any help greatly appreciated!
T = 10×0.25 = 2.5Nm
α = T/I where I = 0.5×10kg×(0.25m)2 = 0.3125 kgm2
α = 2.5/0.3125 = 8 rads-2
and lastly, the linear acceleration of the CG of the wheel is given by
a = α×r = 8×0.25 = 2ms-2
This is double what I needed, why does using the force from Newton's second law for linear motion not agree with the law for rotational motion?
Any help greatly appreciated!