- #1
FEAnalyst
- 346
- 147
- TL;DR Summary
- How to calculate maximum shear stress and twist angle of a thick-walled arbitrary open cross-section (e.g. I, T, L, C) bar subjected to torsion ?
Hi,
I analyzed various open cross-section (I, T, L, C) bars using FEA to find maximum shear stress and twist angle. Now I would like to compare these results with approximate hand calculations. Just out of curiosity. However it's not easy to do it analytically. I know about a method of dividing open section into several rectangles and calculating and then summing their torsion constants. Unfortunately the books say that this method applies to thin-walled sections and I would like to solve some thick-walled bars. So is there any other approximate method I could use or maybe the one mentioned above can be used even for thick-walled bars ? Of course I realize that results won't be exact. If there's no approximate method then do you know about any examples for these sections with the use of differential equations ?
Thanks in advance for your help
I analyzed various open cross-section (I, T, L, C) bars using FEA to find maximum shear stress and twist angle. Now I would like to compare these results with approximate hand calculations. Just out of curiosity. However it's not easy to do it analytically. I know about a method of dividing open section into several rectangles and calculating and then summing their torsion constants. Unfortunately the books say that this method applies to thin-walled sections and I would like to solve some thick-walled bars. So is there any other approximate method I could use or maybe the one mentioned above can be used even for thick-walled bars ? Of course I realize that results won't be exact. If there's no approximate method then do you know about any examples for these sections with the use of differential equations ?
Thanks in advance for your help