Total translational kinetic energy

AI Thread Summary
The discussion focuses on calculating the total translational kinetic energy of helium gas in a 0.03m³ vessel at 0.0°C and 1.00 atm. The key equations involved are the ideal gas law (pV=nRT) and the average translational kinetic energy formula (K = (3RT)/(2N)). A mistake was identified in the calculations regarding the number of molecules, where the correct formula should include N in the numerator. After correcting the approach, the expected total energy should align with the book's answer of 4.5 kJ. The conversation emphasizes the importance of accurately applying the equations to achieve the correct result.
Deoxygenation
Messages
10
Reaction score
0
[SOLVED] Total translational kinetic energy

1.A 0.03m3 vessel contains helium (monatomic) gas at 0.0C and 1.00 atm. The total translational kinetic energy of the gas molecules is (in KJ).

2. 3/2KbT


3. pV=nRT

where p is the pressure, V is the volume, n is the number of molecules present, R is the gas constant (8.31J/(mol*K)), and T is the temperature in Kelvins (273K = 0ºC)
The other equation is that the average translational kinetic energy K of a single molecule is

K = (3RT)/(2N)

where R and T are from the first equation and N is Avogadro's number (6.022E23).
Just sub in numbers:
K = (3 * 8.31 * 273) / ( 2 * 6.022E23) = 5.651E-21 Joules. This is the kinetic energy of one atom of helium at 0º C. Change the first equation around to get n = (pV) / (RT) and then multiply 5.65E-21 by n


The answer in the book shows its suppose to be 4.5kJ, but I'm yet to get that, I'm getting a way off number. Thanks for any help given :+)
 
Physics news on Phys.org
2. 3/2KbT

This doesn't look right. It should be K = \frac{3Nk_BT}{2} where N is the number of molecules in the vessel.

K = (3RT)/(2N)

Again, you are missing the N in the numerator. This equation is just the one above with a substitution for k_B.

If you have the N in the numerator, you will have a ratio of \frac{N}{N_A} which is the number of moles of gas, n.

So just start over with the right equation and you should come out to the right answer.
 
Awesome, Thanks for showing me where I made my mistake :+)
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top