A Trace of the inverse of matrix products

nikozm
Messages
51
Reaction score
0
Hello,

I am puzzled about the following condition. Assume a matrix A with complex-valued zero-mean Gaussian entries and a matrix B with complex-valued zero-mean Gaussian entries too (which are mutually independent of the entries of matrix A).

Then, how can we prove that Trace{[(A*B)^{H}*(A*B)]^{-1}} is always lower that Trace{[(A)^{H}*(A)]^{-1}} ?

The superscripts {H} and {-1} denote the Hermitian transpose and matrix inverse operator, respectively.

Any idea could be helpful.
Thank you very much in advance.
 
Physics news on Phys.org
What is the definition of *always* here? I could pick any matrices A and B, and they would have some probability of being sampled by the gaussians you describe. So is this result intended to just be true for any pair of matrices A and B?
 
Yes. I would like to know if (and how) is this result true for generally random matrices A and B (where their elements are particularly independent complex-valued Gaussian distributed).

Any suggestion could be useful. Thanks in advance.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top