A Trace of the inverse of matrix products

nikozm
Messages
51
Reaction score
0
Hello,

I am puzzled about the following condition. Assume a matrix A with complex-valued zero-mean Gaussian entries and a matrix B with complex-valued zero-mean Gaussian entries too (which are mutually independent of the entries of matrix A).

Then, how can we prove that Trace{[(A*B)^{H}*(A*B)]^{-1}} is always lower that Trace{[(A)^{H}*(A)]^{-1}} ?

The superscripts {H} and {-1} denote the Hermitian transpose and matrix inverse operator, respectively.

Any idea could be helpful.
Thank you very much in advance.
 
Physics news on Phys.org
What is the definition of *always* here? I could pick any matrices A and B, and they would have some probability of being sampled by the gaussians you describe. So is this result intended to just be true for any pair of matrices A and B?
 
Yes. I would like to know if (and how) is this result true for generally random matrices A and B (where their elements are particularly independent complex-valued Gaussian distributed).

Any suggestion could be useful. Thanks in advance.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
Replies
2
Views
880
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K