- #1
Chenkb
- 41
- 1
Spin-1 matrix Sx, Sy, Sz are traceless 3*3 matrix, and have the property ##[S_i, S_j] = i\epsilon_{ijk}S_k##, and we know that ##Tr(S_i^2) = 1^2+0^2+(-1)^2=2##.
All of the above are independent of representation, of course, the trace of a matrix is representation-independent.
so, if we want to know ##Tr(S_xS_z)=?##, we can use ##Tr(S_yS_z^2)=Tr[(S_zS_y+iS_x)S_z]=Tr(S_yS_z^2)+iTr(S_xS_z)##, thus ##Tr(S_xS_z)=0##.
And my question is, what about ##Tr(S_xS_yS_xS_y)=?## Using the similar method mentioned above.
Regards!
All of the above are independent of representation, of course, the trace of a matrix is representation-independent.
so, if we want to know ##Tr(S_xS_z)=?##, we can use ##Tr(S_yS_z^2)=Tr[(S_zS_y+iS_x)S_z]=Tr(S_yS_z^2)+iTr(S_xS_z)##, thus ##Tr(S_xS_z)=0##.
And my question is, what about ##Tr(S_xS_yS_xS_y)=?## Using the similar method mentioned above.
Regards!