Transformation rules for vielbein and spin connection

Steve Rogers
Messages
9
Reaction score
2
Homework Statement
Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$
Relevant Equations
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$

$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c$$
I am taking a course on General Relativity. Recently, I was given the following homework assignment, which reads

> Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$

I was instructed to use:
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$
and
$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c.$$
Also, the professor told us to consider the covariant derivative
$$\nabla_a=e_a^\mu\partial_\mu+\frac{1}{2}\omega_a^{bc}M_{cb}$$
To be honest, I have no idea what these symbols are (after examining my GR lecture note carefully). And most frustratingly, even if I have taken a one-year course on differential geometry (mathematical rigor), I still know nothing about the covariant derivative above. What on Earth do these symbols stand for? Is there any standard textbook that can help a GR beginner like me? I came here for some advice, please. Thank you very much.
 
Physics news on Phys.org
Thank you. The chapter you mentioned does contain some information about vielbein, but to crack the problem, I need to find the variations of ##e_a^\mu## and ##\omega_a^{bc}##. This confuses me a lot because those ##\lambda##'s and partial derivatives in the formulas came out of nowhere.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top