Transformation rules for vielbein and spin connection

Steve Rogers
Messages
9
Reaction score
2
Homework Statement
Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$
Relevant Equations
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$

$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c$$
I am taking a course on General Relativity. Recently, I was given the following homework assignment, which reads

> Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$

I was instructed to use:
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$
and
$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c.$$
Also, the professor told us to consider the covariant derivative
$$\nabla_a=e_a^\mu\partial_\mu+\frac{1}{2}\omega_a^{bc}M_{cb}$$
To be honest, I have no idea what these symbols are (after examining my GR lecture note carefully). And most frustratingly, even if I have taken a one-year course on differential geometry (mathematical rigor), I still know nothing about the covariant derivative above. What on Earth do these symbols stand for? Is there any standard textbook that can help a GR beginner like me? I came here for some advice, please. Thank you very much.
 
Physics news on Phys.org
Thank you. The chapter you mentioned does contain some information about vielbein, but to crack the problem, I need to find the variations of ##e_a^\mu## and ##\omega_a^{bc}##. This confuses me a lot because those ##\lambda##'s and partial derivatives in the formulas came out of nowhere.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top