Transformation rules for vielbein and spin connection

Click For Summary
SUMMARY

The discussion centers on deriving transformation rules for vielbein and spin connection in the context of General Relativity. The specific transformation equations provided are: $$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$ and $$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$. The discussion highlights the need for a deeper understanding of covariant derivatives and the associated mathematical symbols, with a recommendation to consult the chapter "Gravitation as a Gauge Theory" from a specific online resource for further clarification.

PREREQUISITES
  • Understanding of General Relativity concepts, particularly vielbein and spin connection.
  • Familiarity with covariant derivatives and their mathematical implications.
  • Knowledge of differential geometry, especially in the context of gauge theories.
  • Ability to interpret mathematical notation used in theoretical physics.
NEXT STEPS
  • Study the chapter "Gravitation as a Gauge Theory" available at the provided link for foundational knowledge.
  • Research the properties and applications of vielbein in General Relativity.
  • Learn about the mathematical framework of covariant derivatives and their role in gauge theories.
  • Explore advanced textbooks on General Relativity that cover transformation rules and their derivations in detail.
USEFUL FOR

Students of General Relativity, particularly those struggling with the concepts of vielbein and spin connection, as well as anyone seeking to deepen their understanding of covariant derivatives in theoretical physics.

Steve Rogers
Messages
9
Reaction score
2
Homework Statement
Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$
Relevant Equations
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$

$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c$$
I am taking a course on General Relativity. Recently, I was given the following homework assignment, which reads

> Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$

I was instructed to use:
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$
and
$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c.$$
Also, the professor told us to consider the covariant derivative
$$\nabla_a=e_a^\mu\partial_\mu+\frac{1}{2}\omega_a^{bc}M_{cb}$$
To be honest, I have no idea what these symbols are (after examining my GR lecture note carefully). And most frustratingly, even if I have taken a one-year course on differential geometry (mathematical rigor), I still know nothing about the covariant derivative above. What on Earth do these symbols stand for? Is there any standard textbook that can help a GR beginner like me? I came here for some advice, please. Thank you very much.
 
Physics news on Phys.org
Thank you. The chapter you mentioned does contain some information about vielbein, but to crack the problem, I need to find the variations of ##e_a^\mu## and ##\omega_a^{bc}##. This confuses me a lot because those ##\lambda##'s and partial derivatives in the formulas came out of nowhere.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
2
Views
2K