Transformation rules for vielbein and spin connection

AI Thread Summary
The discussion centers on deriving transformation rules for vielbein and spin connection in the context of General Relativity. The user expresses confusion regarding the symbols and concepts involved, particularly the covariant derivative and the variations of vielbein and spin connection. They seek clarification and resources to better understand these topics, specifically mentioning a chapter from a textbook that provides some information. The user feels overwhelmed despite prior coursework in differential geometry. Overall, the thread highlights the challenges faced by students in grasping advanced concepts in General Relativity.
Steve Rogers
Messages
9
Reaction score
2
Homework Statement
Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$
Relevant Equations
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$

$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c$$
I am taking a course on General Relativity. Recently, I was given the following homework assignment, which reads

> Derive the following transformation rules for vielbein and spin connection:

$$\delta e_a^\mu=(\lambda^\nu\partial_\nu e_a^\mu-e_a^\nu\partial_\nu\lambda^\mu)+\lambda_a^b e_b^\mu$$

$$\delta\omega_a^{bc}=\lambda^\mu\partial_\mu\omega_a^{bc}+(-e_a^\mu\partial_\mu\lambda^{bc}+\omega_a^{d[b}\lambda_d^{c]}+\lambda_a^d\omega_d^{bc})$$

I was instructed to use:
$$[M_{ab},X_c]=X_{[a}\eta_{b]c}$$
and
$$[M_{ab},M^{cd}]=-\delta_{[a}^{[c}M_{b]}^{d]}=-\delta_a^c M_b^d+\delta_b^c M_a^d+\delta_a^d M_b^c-\delta_b^d M_a^c.$$
Also, the professor told us to consider the covariant derivative
$$\nabla_a=e_a^\mu\partial_\mu+\frac{1}{2}\omega_a^{bc}M_{cb}$$
To be honest, I have no idea what these symbols are (after examining my GR lecture note carefully). And most frustratingly, even if I have taken a one-year course on differential geometry (mathematical rigor), I still know nothing about the covariant derivative above. What on Earth do these symbols stand for? Is there any standard textbook that can help a GR beginner like me? I came here for some advice, please. Thank you very much.
 
Physics news on Phys.org
Thank you. The chapter you mentioned does contain some information about vielbein, but to crack the problem, I need to find the variations of ##e_a^\mu## and ##\omega_a^{bc}##. This confuses me a lot because those ##\lambda##'s and partial derivatives in the formulas came out of nowhere.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top