Transformations for isotropy in terms of math

Click For Summary
SUMMARY

This discussion focuses on the mathematical equivalence of active and passive transformations in the context of isotropy detection. The participant demonstrates the calculations for a ball dropping towards Earth using both transformation methods, highlighting the equations involved: ##\ddot y = -\frac{d}{dy}(gy)## for passive and ##\ddot y = -\frac{d}{dy}g(xsin\theta - ycos\theta)## for active. A key conclusion is that the sign of the rotation angle must be flipped between the two methods to achieve consistent results, as active rotation by angle ##\theta## is equivalent to passive rotation by angle ##-\theta##.

PREREQUISITES
  • Understanding of active and passive transformations in physics
  • Familiarity with Newtonian mechanics and gravitational equations
  • Knowledge of coordinate transformations in two-dimensional space
  • Basic proficiency in calculus, particularly differentiation
NEXT STEPS
  • Study the principles of isotropy in physics and its mathematical implications
  • Explore coordinate transformations in more complex systems, such as three-dimensional space
  • Learn about the implications of rotation matrices in active and passive transformations
  • Investigate potential energy changes in rotating reference frames
USEFUL FOR

Physicists, mathematicians, and engineering students interested in the concepts of transformations, isotropy, and mechanics, particularly those working with coordinate systems and gravitational effects.

gionole
Messages
281
Reaction score
24
Probably, my last question about isotropy. This is the last thing that I want to double check.

We know that mathematically, passive and active transformation are both the same. In passive, coordinate frame is moved and nothing else, while in active frame, objects are moved and coordinate frame stays the same.

I'm trying to show that I can get the same mathematics by using active and passive for isotropy detection.

Experiment we can do consists of the system that includes earth and ball where ball is dropping to earth from some height.

In passive, we get the following math:

##\ddot y = -\frac{d}{dy}(gy)##
##\ddot y' = -\frac{d}{dy}(gycos\theta)## (in rotated frame)

In active(look at the attached image), I rotate earth and ball counter-clockwise by some ##\theta## angle. Note that calculations of old and new coordinate of the points(after rotation and before rotation) are given by the same mathematics as in passive, so I'm on the right track. ##y' = -xsin\theta + ycos\theta## and ##x' = xcos\theta + ysin\theta##(there's no prime concept here as we only got one fixed frame, but I call the new coordinates after rotation to be primed)

Now, what I do is: in 1st experiment, we got the same thing ##\ddot y = -\frac{d}{dy}(gy)##. In 2nd experiment, after earth and ball rotated, I write the following thing: ##\ddot y = -\frac{d}{dy}g(xsin\theta - ycos\theta)## (I replace ##y## by ##xsin\theta - ycos\theta##). The reason why I replace by such thing is that after we did rotating of earth, it got moved as well, so potential energy can't be represented by ##mgy## anymore. So I find by how much earth got moved in ##y## direction, which is given by ##-xsin\theta + ycos\theta - (-y) = -xsin\theta + ycos\theta +y## and then any point where the ball is can be given by ##y - (-xsin\theta + ycos\theta +y) = xsin\theta - ycos\theta## and then plugging in ##\ddot y = -\frac{d}{dy}(gy)##. Also note that on the left side, I don't replace it, because it would be incorrect, as we're still trying to find acceleration in the same ##y## frame.

So I end up with ##\ddot y = -\frac{d}{dy}g(xsin\theta - ycos\theta)## which results in ##\ddot y = \frac{d}{dy}(gycos\theta)## . Problem is this result doesn't have "-" in front of it, while from passive transformation calculations, it does. where did I make a mistake and how do I end up with the exact same math ?
 

Attachments

  • Screenshot 2023-10-31 at 11.30.12 PM.png
    Screenshot 2023-10-31 at 11.30.12 PM.png
    11.9 KB · Views: 102
Physics news on Phys.org
gionole said:
Problem is this result doesn't have "-" in front of it, while from passive transformation calculations, it does. where did I make a mistake and how do I end up with the exact same math ?
Consider a 2D object in relation to a set of 2D cartesian axes. If you rotate the object (active transformation), say counterclockwise, it's equivalent to rotating the axes (passive transformation) clockwise. In other words:
Active rotation by angle ##\theta## ##\Longleftrightarrow## Passive rotation by angle ##-\theta##.
So you need to flip the sign of the rotation-angle between your two calculations.
 
  • Care
Likes   Reactions: gionole

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
3
Views
1K