I Transformations for isotropy in terms of math

AI Thread Summary
The discussion centers on the mathematical equivalence of active and passive transformations in the context of isotropy detection. The user explores the dynamics of a ball dropping towards the Earth, analyzing both transformations to derive equations of motion. In the passive transformation, the equations yield a negative sign, while the active transformation results in a positive sign, leading to confusion about the discrepancy. The key insight is that active rotation by angle θ is equivalent to passive rotation by angle -θ, necessitating a sign flip in the calculations. This understanding is crucial for aligning the results of both transformation approaches in isotropy analysis.
gionole
Messages
281
Reaction score
24
Probably, my last question about isotropy. This is the last thing that I want to double check.

We know that mathematically, passive and active transformation are both the same. In passive, coordinate frame is moved and nothing else, while in active frame, objects are moved and coordinate frame stays the same.

I'm trying to show that I can get the same mathematics by using active and passive for isotropy detection.

Experiment we can do consists of the system that includes earth and ball where ball is dropping to earth from some height.

In passive, we get the following math:

##\ddot y = -\frac{d}{dy}(gy)##
##\ddot y' = -\frac{d}{dy}(gycos\theta)## (in rotated frame)

In active(look at the attached image), I rotate earth and ball counter-clockwise by some ##\theta## angle. Note that calculations of old and new coordinate of the points(after rotation and before rotation) are given by the same mathematics as in passive, so I'm on the right track. ##y' = -xsin\theta + ycos\theta## and ##x' = xcos\theta + ysin\theta##(there's no prime concept here as we only got one fixed frame, but I call the new coordinates after rotation to be primed)

Now, what I do is: in 1st experiment, we got the same thing ##\ddot y = -\frac{d}{dy}(gy)##. In 2nd experiment, after earth and ball rotated, I write the following thing: ##\ddot y = -\frac{d}{dy}g(xsin\theta - ycos\theta)## (I replace ##y## by ##xsin\theta - ycos\theta##). The reason why I replace by such thing is that after we did rotating of earth, it got moved as well, so potential energy can't be represented by ##mgy## anymore. So I find by how much earth got moved in ##y## direction, which is given by ##-xsin\theta + ycos\theta - (-y) = -xsin\theta + ycos\theta +y## and then any point where the ball is can be given by ##y - (-xsin\theta + ycos\theta +y) = xsin\theta - ycos\theta## and then plugging in ##\ddot y = -\frac{d}{dy}(gy)##. Also note that on the left side, I don't replace it, because it would be incorrect, as we're still trying to find acceleration in the same ##y## frame.

So I end up with ##\ddot y = -\frac{d}{dy}g(xsin\theta - ycos\theta)## which results in ##\ddot y = \frac{d}{dy}(gycos\theta)## . Problem is this result doesn't have "-" in front of it, while from passive transformation calculations, it does. where did I make a mistake and how do I end up with the exact same math ?
 

Attachments

  • Screenshot 2023-10-31 at 11.30.12 PM.png
    Screenshot 2023-10-31 at 11.30.12 PM.png
    11.9 KB · Views: 81
Physics news on Phys.org
gionole said:
Problem is this result doesn't have "-" in front of it, while from passive transformation calculations, it does. where did I make a mistake and how do I end up with the exact same math ?
Consider a 2D object in relation to a set of 2D cartesian axes. If you rotate the object (active transformation), say counterclockwise, it's equivalent to rotating the axes (passive transformation) clockwise. In other words:
Active rotation by angle ##\theta## ##\Longleftrightarrow## Passive rotation by angle ##-\theta##.
So you need to flip the sign of the rotation-angle between your two calculations.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top