Trapezoidal rule to estimate arc length error

Click For Summary
The discussion focuses on using the trapezoidal rule to estimate arc length and the proper formulation of the integrand. The initial integrand was incorrect, leading to confusion about the correct derivative of 1/x^2. After corrections, the proper form of the integrand was established as √(1 + 4/x^6). The conversation also highlighted techniques for finding the maximum of the second derivative, noting that its maximum occurs at the endpoints of the interval depending on whether the function is increasing or decreasing. The user expressed appreciation for the clarification, especially regarding the complexity of evaluating the second derivative at x=5.
Zack K
Messages
166
Reaction score
6
Homework Statement
State the integral (do NOT evaluate) to compute the arc length between x = 1 and x = 5 for the function ##y=\frac{1}{x^2}## (already done)

How many intervals are required to numerically compute the integral in to an accuracy of ##10^{-3}## using the trapezoidal rule?
Relevant Equations
##L=\int_a^b \sqrt{1+(\frac{dy}{dx})^2}dx##

##E_T\leq\frac{(b-a)^3}{12n^2}[max |f^{(2)}(x)|]##
I got the first part of it down, $$L=\int_1^5 \sqrt{1+(\frac{1}{x^2})}dx$$

I just want to know if it's right to make your ##f(x)=\sqrt{1+\frac{1}{x^2}}## then compute it's second derivative and find it's max value, for the trapezoidal error formula.
 
Physics news on Phys.org
Zack K said:
I got the first part of it down, $$L=\int_1^5 \sqrt{1+(\frac{1}{x^4})}dx$$
Your integrand isn't right. What is ##\frac d{dx}\frac 1 {x^2}##? In your integrand above, it looks like you just squared ##\frac 1 {x^2}##, and forgot to find its derivative.
Zack K said:
I just want to know if it's right to make your ##f(x)=\sqrt{1+\frac{1}{x^4}}## then compute it's second derivative and find it's max value, for the trapezoidal error formula.
 
Mark44 said:
Your integrand isn't right. What is ##\frac d{dx}\frac 1 {x^2}##? In your integrand above, it looks like you just squared ##\frac 1 {x^2}##, and forgot to find its derivative.
Yes sorry I realized that then fixed it.
 
Zack K said:
Yes sorry I realized that then fixed it.
It's still wrong. You need to find the derivative of 1/x^2, square it, and add 1. That will go inside the radical for your arc length integrand.
 
Mark44 said:
It's still wrong. You need to find the derivative of 1/x^2, square it, and add 1. That will go inside the radical for your arc length integrand.
Sigh... now I was thinking of integration.

It should be ##\sqrt{1+\frac{4}{x^6}}=\sqrt{\frac{x^6+4}{x^6}}##
 
Zack K said:
It should be ##\sqrt{1+\frac{4}{x^6}}=\sqrt{\frac{x^6+4}{x^6}}##
That's more like it.

Zack K said:
##E_T\leq\frac{(b-a)^3}{12n^2}[max |f^{(2)}(x)|]##
After you get the integral squared away, there are some tricks you can use to find the max of |f2(x)|. If the function (f2(x)) is increasing on an interval [a, b], its largest value will be at x = b. If the function is decreasing, it's largest value will be at the left endpoint of the interval, x = a.
 
  • Informative
Likes Zack K
Mark44 said:
That's more like it.After you get the integral squared away, there are some tricks you can use to find the max of |f2(x)|. If the function (f2(x)) is increasing on an interval [a, b], its largest value will be at x = b. If the function is decreasing, it's largest value will be at the left endpoint of the interval, x = a.
Wow that actually makes so much sense. My biggest issue is once I got the second derivative, I got this large function which seemed annoying to evaluate with x=5 (given that this question could be on an exam). Thank you.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K