B Travel 7 Light Years at 50000km/s - How Long?

Click For Summary
Traveling 7 light years at a speed of 50,000 km/s would take approximately 42 years from an Earth perspective, with relativistic effects being minimal at this speed. The calculations involve using the gamma factor, which shows that time dilation is not significant until speeds approach 0.8 times the speed of light. While constant acceleration could reduce the ship's travel time to about 4 years, this requires reaching speeds close to 97% of light speed. The discussion highlights the challenges and timeframes associated with interstellar travel, emphasizing the lengthy duration involved. Overall, the conversation reflects curiosity about the implications of such long-distance space voyages.
Spockishere
Messages
12
Reaction score
4
TL;DR
I'm intrigued to hear your answers on this one.
let's say i would like to drop by one of my pals on a certain planet, 7ly away. I got to 42 years but it doesn't really sound correct.
 
Physics news on Phys.org
Just tried an other formula and got 1 year, I'm lost haha.
 
Welcome to PF. :smile:

Can you show us your calculation that got you to 42 years? Did you assume any acceleration/deceleration times, or just simplified it to that speed for the whole trip?
 
  • Like
Likes Vanadium 50
Spockishere said:
Summary: I'm intrigued to hear your answers on this one.

let's say i would like to drop by one of my pals on a certain planet, 7ly away. I got to 42 years but it doesn't really sound correct.
That speed is about ##\frac c 6##. So, yes, about ##42## years. Although a little less.
 
  • Like
Likes Ibix
You're going at 1/6th the speed of light w/r to the target. At that velocity, the relativistic corrections are on the order of 1%. They're pretty much irrelevant. So the answer actually is just about six times seven = 42 years. Minus maybe half a year.
 
  • Like
Likes David Lewis, Ibix and PeroK
Thanks for the answers guys.
 
berkeman said:
Welcome to PF. :smile:

Can you show us your calculation that got you to 42 years? Did you assume any acceleration/deceleration times, or just simplified it to that speed for the whole trip?
Thanks for the warm welcome! I used this formula ( 1/(sqrt(1-v^2/c^2)). And i just simplified it to one constant speed for the whole trip.
 
  • Like
Likes berkeman
Spockishere said:
Thanks for the warm welcome! I used this formula ( 1/(sqrt(1-v^2/c^2)). And i just simplified it to one constant speed for the whole trip.
That's the one! It's the gamma factor. But, for ##v = \frac c 6##, we have:
$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{\frac{35}{36}}} \approx 1.014$$Which is not very significantly different from ##1## and implies only a ##1.4 \%## difference between Earth time and spaceship time for the journey.
 
  • Like
Likes vanhees71
Spockishere said:
Summary: I'm intrigued to hear your answers on this one.

but it doesn't really sound correct.

Out of curiosity, why were you doubting the results? IMO, actually doing some math before posting a question puts you in pretty exclusive club. ;-)
 
  • #10
Grinkle said:
Out of curiosity, why were you doubting the results? IMO, actually doing some math before posting a question puts you in pretty exclusive club. ;-)
I wasn't really doubting the results, i just hoped they were wrong. I was curious as to how a space voyage would feel like at those distances. 42 years is a lot haha. And thanks.
 
  • Like
Likes PeroK
  • #11
Spockishere said:
I wasn't really doubting the results, i just hoped they were wrong. I was curious as to how a space voyage would feel like at those distances. 42 years is a lot haha. And thanks.
Even at ##0.5c## the gamma factor is only about ##1.15##. That's still not very significant. You need to get up to ##0.8c## where the gamma factor is ##1.67## to make a real difference.

Interstellar space travel is never going to be easy.
 
  • #12
Spockishere said:
I wasn't really doubting the results, i just hoped they were wrong. I was curious as to how a space voyage would feel like at those distances. 42 years is a lot haha. And thanks.
But you are better than Apollo 12 and Apollo 13. They even needed ##0.5 ms## more from relativistic effects, mainly gravitational time-dilation.

Source:
https://ntrs.nasa.gov/citations/19720022040
 
Last edited:
  • #13
However at constant 1G acceleration then decelleration you could make the 7 LY trip in a little over 4 years ship time, but would hit a top speed of 0.97c

there are a number of calculators online for this
 

Similar threads

  • · Replies 65 ·
3
Replies
65
Views
11K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
101
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 98 ·
4
Replies
98
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
18
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 41 ·
2
Replies
41
Views
4K