RidiculousName said:
Well, I know the definition of $\tan^{-1}$ is, $\tan\theta = y$, and $\frac{-\pi}{2} < \theta < \frac{\pi}{2}$. I forget exactly what the definition of inverse sine and cosine were, but I think the second half of sine was $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$, and for cosine it was the same as sine, but with 0 and $\pi$.
That is correct.
RidiculousName said:
I don't understand why x would have to be $-1 \leq x \leq 1$ to work unless it is referring to the unit-circle. But I am not sure this is correct, or if it would apply to cosine and tangent too.
As we can see in the unit circle, we are indeed limited to $-1 \leq x \leq 1$ for $\cos^{-1}$ and $\sin^{-1}$.
This limitation does not apply to $\tan^{-1}$ though, which is defined for every $x$.
Either way, for this problem we would still limit $x$ to the given range.
RidiculousName said:
I am still confused about which combinations will return the same result, but if I had to guess, if the regular trig function comes first x must be $-1 \leq x \leq 1$, except possibly for tangent because it is undefined at $\frac{\pi}{2}$ radians or 90 degrees. So, I'm not sure what values of x would return x.
If the regular trig function is left most, it means that we evaluate the inverse function first.
Since the inverse function is actually invertible, that means that applying the regular trig functions afterwards, will always return the same result.
Let's take a look at $\tan$.
The question then is if $\tan(\tan^{-1}(x))\overset ?= x$ if $-1\le x\le 1$.
The range of $\tan^{-1}$ is defined to be $\left(-\frac\pi 2,\frac\pi 2\right)$.
We won't use the entire range though, since $\tan^{-1}(-1)=-\frac\pi 4$ and $\tan^{-1}(1)=\frac\pi 4$.
Check the unit circle to see why that is.
Either way, if we apply $\tan$ afterwards, we get exactly the original $x$ back don't we?
RidiculousName said:
If the inverse trig function comes first, it seems like x would have to be $0 \leq x \leq \pi$, but again, I'm not sure about tangent.
The important part is whether there are multiple values of $x$ with $-1\le x\le 1$ that map to the same value.
In this interval $\cos$ first goes up to $1$ and then goes down again, so that one is no good.
$\sin$ is an increasing function in this interval, so that one works.
And $\tan$ is also an increasing function in this interval, so that one works as well.