MHB Trigonometric identities transformation

Drain Brain
Messages
143
Reaction score
0
I already did everything that I can to transform the left side member to the right side member but I always get a jumbled terms. Please give me a hand on this problem.

$(2\sin^{2}(\theta)-\cos^{2}(\theta))^{2}-9(2\sin^{2}(\theta)-1)^{2}=(2-3\sin^{2}(\theta))(2+3\sin(\theta))(3\sin(\theta)-2)$
 
Mathematics news on Phys.org
Hey Drain Brain.

ok so for the LHS you have to use a trig sub $cos^2(x)=1-sin^2(x)$

$(2sin^2(x)-(1-sin^2(x)))^2-9(2sin^2(x)-1)^2$ expand this. multiply it out.

for the RHS just expand what you have

$(2-3sin^2(x))(2+3sin(x))(3sin(x)-2)$ = $-8-27\sin ^4\left(x\right)+30\sin ^2\left(x\right)$

make sure the LHS is equal to what I showed for the RHS (you can work out the intermediate steps to show the expansion)

when working on this type of problems, i don't know if it works for you, but i always like to have a sheet of all the trig identities and everything so i can reference to. you may have to play with them a little bit to solve for certain things but NORMALLY you should try to get the whole thing in terms for one thingy only (i forgot what its called) like do it all in terms of sine or all in terms of cosine and if you have tangent you may want to simplify to sine and cosine. so yeah, i hope that helps. and by the way i just realized i did the whole thing using 'x' instead of theta by mistake (Blush) but just make sure not to write 'x' down when you're doing it. :o
 
oh just to note $cos^2(x)=1-sin^2(x)$ is just $sin^2(x)+cos^2(x)=1$ :)
 
Drain Brain said:
I already did everything that I can to transform the left side member to the right side member but I always get a jumbled terms. Please give me a hand on this problem.

$(2\sin^{2}(\theta)-\cos^{2}(\theta))^{2}-9(2\sin^{2}(\theta)-1)^{2}=(2-3\sin^{2}(\theta))(2+3\sin(\theta))(3\sin(\theta)-2)$
I see that there is no $\cos\theta$ on the RHS so convert $\cos^2\theta$ on LHS to $1-\sin ^2\theta$ and get LHS as
$(3\sin^{2}(\theta)-1))^{2}-9(2\sin^{2}(\theta)-1)^{2}$
which is difference of 2 squares.
now you should be able to proceed
 
Hello, Drain Brain!

$(2\sin^2x-\cos^2x)^2-9(2\sin^2x-1)^2\;=\;(2-3\sin^2x)(2+3\sin x)(3\sin x-2)$
Since $\cos^2x \:=\:1-\sin^2x$, the left side becomes:

$\quad (3\sin^2x-1)^2 - 9(2\sin^2x-1)^2\qquad $difference of squares!

$\;\;=\;\big[(3\sin^2x-1) - 3(2\sin^2x-1)\big]\,\big[(3\sin^2x-1) + 3(2\sin^2x - 1)\big] $

$\;\;=\;\big[3\sin^2x-1-6\sin^2x+3\big]\,\big[3\sin^2x-1 + 6\sin^2x-3\big]$

$\;\;=\;(2-\sin^2x)(9\sin^2x-4)$

$\;\;=\; (2-\sin^2x)(3\sin x - 2)(3\sin x + 2)$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
11
Views
2K
Replies
1
Views
7K
Replies
5
Views
1K
Replies
4
Views
2K
Back
Top