Trouble finding ##L^2## in function of ##x## and ##p##

pixyl
Messages
2
Reaction score
3
Homework Statement
Prove that ##\vec L^2 = \vec x^2 \vec p^2 - (\vec x \cdot \vec p)^2 + i\hbar \vec x \cdot \vec p##
Relevant Equations
##\varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}##,
##L_i = \varepsilon_{ijk}x^jp^k##,
##[x^i, p^j] = i\hbar\delta_{ij}##
##[x^i, x^j] = [p^i, p^j] = 0##
What I've done is
$$\vec{L}^2 = \varepsilon_{ijk}x^jp^k\varepsilon_{imn}x^mp^n = (\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km})x^jp^kx^mp^n = x^jp^kx^jp^k - x^jp^kx^kp^j = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - x^jp^kx^kp^j = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - (x^jx^kp^kp^j - i\hbar x^jp^j) = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - (x^jx^kp^jp^k - i\hbar x^jp^j) = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - x^jp^jx^kp^k = $$
$$ = \vec x^2 \vec p^2 - (\vec x \cdot \vec p)^2 - i\hbar \vec x \cdot \vec p$$

I've tried again and again and I don't understand what I'm doing wrong: if you can spot the error it would be greatly appreciated.
 
Physics news on Phys.org
##p_k x_k=x_k p_k - i\hbar \delta_{kk} = x_k p_k - 3i\hbar##
 
  • Like
Likes PhDeezNutz and pixyl
vela said:
##p_k x_k=x_k p_k - i\hbar \delta_{kk} = x_k p_k - 3i\hbar##
Oh my god yes... I just thought ##\delta_{kk} = 1## so I ignored it, forgetting about the sum. Thank you, you've ended my two days misery!
 
  • Like
Likes PhDeezNutz and vela
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top