Trouble finding ##L^2## in function of ##x## and ##p##

pixyl
Messages
2
Reaction score
3
Homework Statement
Prove that ##\vec L^2 = \vec x^2 \vec p^2 - (\vec x \cdot \vec p)^2 + i\hbar \vec x \cdot \vec p##
Relevant Equations
##\varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}##,
##L_i = \varepsilon_{ijk}x^jp^k##,
##[x^i, p^j] = i\hbar\delta_{ij}##
##[x^i, x^j] = [p^i, p^j] = 0##
What I've done is
$$\vec{L}^2 = \varepsilon_{ijk}x^jp^k\varepsilon_{imn}x^mp^n = (\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km})x^jp^kx^mp^n = x^jp^kx^jp^k - x^jp^kx^kp^j = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - x^jp^kx^kp^j = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - (x^jx^kp^kp^j - i\hbar x^jp^j) = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - (x^jx^kp^jp^k - i\hbar x^jp^j) = $$
$$ = x^jx^jp^kp^k - i\hbar x^jp^j - x^jp^jx^kp^k = $$
$$ = \vec x^2 \vec p^2 - (\vec x \cdot \vec p)^2 - i\hbar \vec x \cdot \vec p$$

I've tried again and again and I don't understand what I'm doing wrong: if you can spot the error it would be greatly appreciated.
 
Physics news on Phys.org
##p_k x_k=x_k p_k - i\hbar \delta_{kk} = x_k p_k - 3i\hbar##
 
  • Like
Likes PhDeezNutz and pixyl
vela said:
##p_k x_k=x_k p_k - i\hbar \delta_{kk} = x_k p_k - 3i\hbar##
Oh my god yes... I just thought ##\delta_{kk} = 1## so I ignored it, forgetting about the sum. Thank you, you've ended my two days misery!
 
  • Like
Likes PhDeezNutz and vela
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top