Undergrad Trouble with metric. Holonomic basis and the normalised basis

Click For Summary
The discussion centers on the confusion between holonomic and normalized bases in differential geometry, particularly regarding the metric tensor components. It highlights that in the holonomic basis, the metric components are given by g_{rr}=1 and g_{\theta\theta}=r^2, while in the normalized basis, both g_{\hat{r}\hat{r}} and g_{\hat{\theta}\hat{\theta}} equal 1. Participants clarify that the normalization by a factor of r is necessary to maintain the correct relationships between the basis vectors and covectors. The conversation emphasizes the importance of correctly applying these bases to avoid errors in calculations involving gradients and differential forms. Understanding these distinctions is crucial for accurate mathematical modeling in physics and geometry.
GR191511
Messages
76
Reaction score
6
TL;DR
about metric
##df=\frac {\partial f}{\partial r} dr+\frac {\partial f}{\partial \theta}d\theta\quad
\nabla f=\frac{\partial f}{\partial r}\vec{e_r} +\frac{1}{r}\frac{\partial f}{\partial \theta }\vec{e_\theta }##
On the other hand ## g_{rr}=1\:g_{r\theta}=0\:g_{\theta r}=0\;g_{\theta\theta}=r^2\;##So According to##v_2=v^{\alpha} g_{\alpha 2}\;then\; (df)_{\theta}=\frac{\partial f}{\partial r}*0+\frac{1}{r}\frac{\partial f}{\partial \theta }*r^2=r\frac{\partial f}{\partial \theta }\neq\frac{\partial f}{\partial \theta }##Where have I gone wrong?
 
Last edited:
Physics news on Phys.org
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
 
  • Like
Likes GR191511, jedishrfu and berkeman
ergospherical said:
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
Thank you! I tried and I found ##g_{\hat{\theta}\hat{\theta}}=1## apply to a transition from the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})## to the holonomic covertor basis ##(dr, d\theta)## ...But when can I use ##g_{\hat{\theta}\hat{\theta}}=r^2## ?
 
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
 
ergospherical said:
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
Thanks! Does ##g_{\theta\theta}=r^2## apply to any transition?from the holonomic basis to the normalised covector basis? I have already checked,it doesn't.
 
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) = 1##.
 
ergospherical said:
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) =
Thank you!
##df=\frac {\partial f} {\partial r}dr+\frac{1}{r}\frac {\partial f} {\partial \theta}rd\theta## and
##(dr,rd\theta ) \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix} \begin{pmatrix}
dr \\
rd\theta \\
\end{pmatrix}\Rightarrow g_{rr}=g_{\theta\theta}=g^{rr}=g^{\theta\theta}=1\Rightarrow##
##(\nabla f)^\theta=\frac{1}{r}\frac {\partial f} {\partial \theta}*g^{\theta\theta}=\frac{1}{r}\frac {\partial f} {\partial \theta}\;and\;(\nabla f)^r=\frac {\partial f} {\partial r}##
##\Rightarrow \nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r}\frac {\partial f} {\partial \theta}(\vec e_\theta\;or\;\frac{\vec e_\theta}{r})?if\;it\;is\;\frac{\vec e_\theta}{r}\;then##
##\nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r^2}\frac {\partial f} {\partial \theta}\vec e_\theta## it is wrong.But if it is##\;\vec e_\theta##...the##\;\vec e_\theta## is not a dual basis vector of##\;rd\theta##.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
5
Views
2K