Trouble with metric. Holonomic basis and the normalised basis

Click For Summary
SUMMARY

The discussion centers on the confusion between holonomic and normalized bases in differential geometry, specifically regarding the metric tensor components. The participants clarify that in a holonomic basis, the metric components are defined as \(g_{\theta\theta} = r^2\), while in a normalized basis, they are \(g_{\hat{\theta}\hat{\theta}} = 1\). The transition between these bases requires careful handling of the metric and basis vectors, particularly the normalization factor of \(r\) for the angular component. Misunderstandings about these concepts can lead to incorrect expressions for differential forms and gradients.

PREREQUISITES
  • Understanding of differential geometry concepts, including holonomic and normalized bases.
  • Familiarity with metric tensors and their components in different coordinate systems.
  • Knowledge of differential forms and their representation in various bases.
  • Proficiency in mathematical notation, particularly in calculus and vector analysis.
NEXT STEPS
  • Study the properties of metric tensors in various coordinate systems, focusing on holonomic versus normalized bases.
  • Learn about the implications of basis normalization on differential forms and gradients in differential geometry.
  • Explore the concept of covectors and their relationships with basis vectors in different coordinate systems.
  • Investigate applications of normalized bases in physics, particularly in general relativity and other fields involving curved spacetime.
USEFUL FOR

Mathematicians, physicists, and students of differential geometry who seek to deepen their understanding of basis transformations and metric properties in curved spaces.

GR191511
Messages
76
Reaction score
6
TL;DR
about metric
##df=\frac {\partial f}{\partial r} dr+\frac {\partial f}{\partial \theta}d\theta\quad
\nabla f=\frac{\partial f}{\partial r}\vec{e_r} +\frac{1}{r}\frac{\partial f}{\partial \theta }\vec{e_\theta }##
On the other hand ## g_{rr}=1\:g_{r\theta}=0\:g_{\theta r}=0\;g_{\theta\theta}=r^2\;##So According to##v_2=v^{\alpha} g_{\alpha 2}\;then\; (df)_{\theta}=\frac{\partial f}{\partial r}*0+\frac{1}{r}\frac{\partial f}{\partial \theta }*r^2=r\frac{\partial f}{\partial \theta }\neq\frac{\partial f}{\partial \theta }##Where have I gone wrong?
 
Last edited:
Physics news on Phys.org
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
 
  • Like
Likes   Reactions: GR191511, jedishrfu and berkeman
ergospherical said:
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
Thank you! I tried and I found ##g_{\hat{\theta}\hat{\theta}}=1## apply to a transition from the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})## to the holonomic covertor basis ##(dr, d\theta)## ...But when can I use ##g_{\hat{\theta}\hat{\theta}}=r^2## ?
 
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
 
  • Like
Likes   Reactions: GR191511
ergospherical said:
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
Thanks! Does ##g_{\theta\theta}=r^2## apply to any transition?from the holonomic basis to the normalised covector basis? I have already checked,it doesn't.
 
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) = 1##.
 
  • Like
Likes   Reactions: GR191511
ergospherical said:
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) =
Thank you!
##df=\frac {\partial f} {\partial r}dr+\frac{1}{r}\frac {\partial f} {\partial \theta}rd\theta## and
##(dr,rd\theta ) \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix} \begin{pmatrix}
dr \\
rd\theta \\
\end{pmatrix}\Rightarrow g_{rr}=g_{\theta\theta}=g^{rr}=g^{\theta\theta}=1\Rightarrow##
##(\nabla f)^\theta=\frac{1}{r}\frac {\partial f} {\partial \theta}*g^{\theta\theta}=\frac{1}{r}\frac {\partial f} {\partial \theta}\;and\;(\nabla f)^r=\frac {\partial f} {\partial r}##
##\Rightarrow \nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r}\frac {\partial f} {\partial \theta}(\vec e_\theta\;or\;\frac{\vec e_\theta}{r})?if\;it\;is\;\frac{\vec e_\theta}{r}\;then##
##\nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r^2}\frac {\partial f} {\partial \theta}\vec e_\theta## it is wrong.But if it is##\;\vec e_\theta##...the##\;\vec e_\theta## is not a dual basis vector of##\;rd\theta##.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K