MHB Troubleshooting Inequality: Can't Seem to Solve the Last One

ahbm
Messages
1
Reaction score
0
Trying to get the last one, but not able to do it. What am I missing. I know that I can't but [-2,infinity] or [3,infinity] because for -2, and 3 y=0 and is not > 0. Any help appreciated.
 

Attachments

  • Calculus.png
    Calculus.png
    14 KB · Views: 110
Mathematics news on Phys.org
Is g(-2) > 0? No, so that part of the interval will be [math]( -\infty, -2)[/math].

-Dan
 
Also, because the question requires that f(x) be strictly less than 0, f(x)< 0 you cannot include x= -2 or x= 3. f(x)< 0 is true for (-\infty, -2)\cup (3, \infty).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top