Truncated form of a infinite series

Click For Summary
SUMMARY

The discussion centers on deriving the truncated form of a specific infinite series as presented in Griffith's "Introduction to Electrodynamics." The series in question is expressed as \(\frac{4V_0}{\pi}\sum_{n=1,3,5,7,...}^{\infty}\frac{1}{n}e^{-n\pi x/a}\sin(n\pi y/a)\) and is claimed to equal \(\frac{2V_0}{\pi}\arctg\left(\frac{\sin(\pi y/a)}{\sinh(\pi x/a)}\right)\). A method is proposed involving the use of Euler's identity and complex functions to manipulate the series into a more manageable form, ultimately leading to the desired result through differentiation and summation techniques.

PREREQUISITES
  • Understanding of infinite series and convergence concepts
  • Familiarity with complex functions and Euler's identity
  • Knowledge of hyperbolic functions and their properties
  • Basic calculus, particularly differentiation and integration techniques
NEXT STEPS
  • Study the application of Euler's identity in complex analysis
  • Learn about the convergence of infinite series and uniform convergence
  • Explore hyperbolic functions and their derivatives
  • Investigate techniques for finding the imaginary part of complex functions
USEFUL FOR

Students and professionals in physics, particularly those studying electrodynamics, as well as mathematicians interested in series convergence and complex analysis techniques.

benf.stokes
Messages
67
Reaction score
0
Hi,

In griffith's "Introduction to Electrodynamics" he indicates that a specific infinite series has a truncated form (the series and truncated form are given below)
And he says the reader can try to show that it indeed has that form.

\frac{4V_0}{\pi}\sum_{n=1,3,5,7,...}^{\infty}\frac{1}{n}e^{-n\pi x/a}sin(n\pi y/a)=\frac{2V_0}{\pi}arctg(\frac{sin(\pi y/a)}{sinh(\pi x/a)})

However I can't figure out how to get that result. Can anybody help me figure it out, without starting from the truncated form?
 
Last edited:
Physics news on Phys.org
benf.stokes said:
Hi,

In griffith's "Introduction to Electrodynamics" he indicates that a specific infinite series has a truncated form (the series and truncated form are given below)
And he says the reader can try to show that it indeed has that form.

\frac{4V_0}{\pi}\sum_{n=1,3,5,7,...}^{\infty}\frac{1}{n}e^{-n\pi x/a}sin(n\pi y/a)=\frac{2V_0}{\pi}arctg(\frac{sin(\pi y/a)}{sinh(\pi x/a)})

However I can't figure out how to get that result. Can anybody help me figure it out, without starting from the truncated form?

Hm. I would first start by writing this as

$$V(x,y) = \frac{4V_0}{\pi} \mbox{Im}\left[ \sum_{n~odd}^\infty \frac{\exp(-n\pi x/a + i n\pi y/a)}{n}\right],$$
where "Im" denotes the imaginary part of the expression and I have used Euler's identity.

If we write ##z = x - iy##, then we can write this as a complex function

$$\tilde{V}(z) = \frac{4V_0}{\pi} \sum_{k=0}^\infty \frac{e^{-(2k+1)\pi z/a}}{2k+1}.$$

If we differentiate once with respect to z, and assuming the sum uniformly(?) converges so that we can exchange derivatives and infinite sums, we have

$$\frac{d\tilde{V}}{dz} = \frac{-4V_0}{a} \sum_{k=0}^\infty e^{-(2k+1)\pi z/a} = -\frac{4V_0}{a}e^{-\pi z/a} \sum_{k=0}^\infty (e^{-2\pi z/a})^k.$$

This should now be in a form you can sum up explicitly. You can write the result in terms of a hyperbolic trig function that you can find the antiderivative of to get ##\tilde{V}(z)## back. The trick then is to find the imaginary part of the resulting expression.
 
Last edited:
Hi,

Thanks for the help :). I managed to do it
 
Glad you got it. By the way, about your terminology, the phrase "truncated form of an infinite series" suggests to me that you have taken only a finite number of terms of the series (i.e., you truncated the series). Typically people call the result of summing up an infinite series into an expression in terms of finitely many elementary functions a "closed form".
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K