Trying to find HOW to get the velocity.

  • Thread starter Thread starter JohnTheGreat101
  • Start date Start date
  • Tags Tags
    Velocity
Click For Summary
SUMMARY

The discussion centers on calculating the velocity of a block with a dart, concluding that the correct velocity is 750 m/s. Participants identified errors in the initial calculations, specifically the need to account for the initial velocity of the dart and the influence of friction. The force of friction was clarified as -.1435mg, leading to an acceleration of -.1435g. The conversation also highlighted ambiguities in the problem statement regarding time measurements and rolling resistance.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with concepts of friction and rolling resistance
  • Knowledge of kinematic equations
  • Basic algebra for solving equations
NEXT STEPS
  • Study the application of Newton's second law in friction scenarios
  • Learn about rolling resistance coefficients and their impact on motion
  • Explore kinematic equations in-depth, particularly for multi-object systems
  • Investigate the principles of conservation of momentum in collisions
USEFUL FOR

Physics students, educators, and anyone involved in mechanics or motion analysis will benefit from this discussion, particularly those focusing on problems involving friction and velocity calculations.

JohnTheGreat101
Messages
8
Reaction score
0
Homework Statement
Suppose a 15.0 g dart is fired into a wooden block that is mounted on wheels with a total
mass of 10.0 kg. The time required for the block to travel a distance of 45.0 cm is
measured after the dart lodges into the block. This can easily be accomplished with a
pair of photocells and an electric clock. If the coefficient of friction between the
wheels and floor is 0.1435 and the measured time to come to a stop is .80 seconds, what
is the muzzle velocity of the dart? (assume no drag force on the dart before it hits the
block).
Relevant Equations
x= vt + 1/2 at^2
m1v1=m2v2
This is a practice problem so I know that the answer is 750 m/.s. Not totally sure what to do with the friction or if any of my listed equations are relevant here but here goes what I've tried:

.45 kg = v(0.8 sec) + 1/2(-9.8 *0.1435) * (0.8)^2

.45 kg = v(0.8) + 1/2(-1.4063) * 0.64
.45=v(0.8) - 0.450015
0.900016= V(0.8)
V does not equal 1.12 m/s
 
Physics news on Phys.org
You only calculated the initial velocity of the block with the dart in it. You still need to calculate initial velocity of dart. You have also written some units incorrectly, but it does not effect the math. The force of friction is -.1435mg so the acceleration is -.1435g.
 
There are some oddities with the question.
We are given the "coefficient of friction". Assuming the wheels are free to rotate, the friction will be static, and its coefficient irrelevant. So presumably they mean the rolling resistance coefficient.
It says the time to travel a stated distance is measured, but at that point in the text does not specify that time.
Later, it gives the time to come to a stop. Are we supposed to assume these refer to the same event, i.e. it comes to a stop at the given distance?
It seems so, since on that basis we can calculate the rolling resistance, and it is indeed the value given. So whoever set the question must have been aware it was redundant information. Unusual.

JohnTheGreat101 said:
.45 kg = v(0.8 sec) + 1/2(-9.8 *0.1435) * (0.8)^2
.45cm.

While I typed all that, @caz beat me to pointing out your error.
 
Last edited:
caz said:
You only calculated the initial velocity of the block with the dart in it. You still need to calculate initial velocity of dart. You have also written some units incorrectly, but it does not effect the math. The force of friction is -.1435mg so the acceleration is -.1435g.
I see so then I would just apply the equation: m1v1=m2v2 and solve for V1?
 
Yes.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
881
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
824
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
992
Replies
57
Views
3K