Trying to understand electric and magnetic fields as 4-vectors

user1139
Messages
71
Reaction score
8
Homework Statement
Assuming that the first pair of equations given below are correct, how do I show that the electric and magnetic fields obtained transform correctly under general Lorentz boost?
Relevant Equations
The relevant equations are provided below.
I was trying to show that the field transformation equations do hold when considering electric and magnetic fields as 4-vectors. To start off, I obtained the temporal and spatial components of ##E^{\alpha}## and ##B^{\alpha}##. The expressions are obtained from the following equations:

$$E^{\alpha}=F^{\alpha\beta}U_{\beta},\: B^{\alpha}=\frac{1}{2c}\epsilon^{\alpha\beta\mu\nu}F_{\beta\mu}U_{\nu}$$

I obtained:
\begin{align*}
E^{0}&=F^{00}U_{0}+F^{0i}U_{i}=\frac{\gamma(u)}{c}\left(\vec{E}\cdot\vec{u}\right)\\
E^{i}&=F^{i0}U_{0}+F^{ij}U_{j}=\gamma(u)\left[\vec{E}+\left(\vec{u}\times\vec{B}\right)\right]^{i}\\
B^{0}&=\frac{1}{2c}\epsilon^{0\beta\mu\nu}F_{\beta\mu}U_{\nu}=-\frac{\gamma(u)}{c}\left(\vec{B}\cdot\vec{u}\right)\\
B^{i}&=\frac{1}{2c}\epsilon^{i\beta\mu 0}F_{\beta\mu}U_{0}+\frac{1}{2c}\epsilon^{i\beta\mu j}F^{\beta\mu}U_{j}=\gamma(u)\left[\vec{B}-\frac{\vec{u}}{c^2}\times\vec{E}\right]^{i}
\end{align*}

I interpreted the above components as that of fields observed by a stationary observer. To show that the fields transform correctly I have to show that:
$$\vec E' = \gamma \left( \vec E + c\vec \beta \times \vec B\right) - \frac{\gamma^2}{\gamma +1} \vec \beta \left( \vec\beta \cdot \vec E \right )$$
$$\vec B' = \gamma \left( \vec B - \frac{\vec \beta}{c} \times \vec E\right) - \frac{\gamma^2}{\gamma +1} \vec \beta \left( \vec\beta \cdot \vec B \right )$$

i.e. I have to show that I am able to construct the RHS from the components I have found. However, I do not seem to be able to show that using the Lorentz transformation equations under general boost. The Lorentz transformation equations under general boost is given as:
$$A^{'0}=\gamma\left(A^0-\vec{\beta}\cdot\vec{A}\right)$$
$$\vec{A}'_{\parallel}=\gamma\left(\vec{A}_{\parallel}-\vec{\beta}A^0\right)$$
$$\vec{A}'_{\perp}=\vec{A}_{\perp}$$

How should I proceed?
 
Physics news on Phys.org
The formula without ##\gamma^2## terms seem correct Lorentz transformation. How do you estimate these terms necessary ?
 
What do you mean?
 
\vE¯∥=\vE∥,\vE¯⊥=γ(\vE⊥+\vv×\vB⊥)I am sorry to say my post #1 was wrong.

Electric fields and magnetic fields from electromagnetic tensor comes from
E_{i}=cF_{0i},\ B_i=-\frac{1}{2}\epsilon_{ijk}F^{jk}

I wonder whether it is same as your formula in post #1 and what are ##E^0## and ##B^0##?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top