Trying to understand electric and magnetic fields as 4-vectors

Click For Summary
The discussion focuses on the transformation of electric and magnetic fields as 4-vectors, specifically examining the components derived from the electromagnetic field tensor. The user derived expressions for the temporal and spatial components of the electric and magnetic fields, aiming to demonstrate that these fields transform correctly under Lorentz transformations. However, they encountered difficulties in showing the transformation equations hold, particularly regarding the terms involving gamma factors. Clarification is sought on how to proceed with the transformation equations and the significance of the gamma squared terms. The conversation highlights the complexity of relating the derived components to the expected transformation results.
user1139
Messages
71
Reaction score
8
Homework Statement
Assuming that the first pair of equations given below are correct, how do I show that the electric and magnetic fields obtained transform correctly under general Lorentz boost?
Relevant Equations
The relevant equations are provided below.
I was trying to show that the field transformation equations do hold when considering electric and magnetic fields as 4-vectors. To start off, I obtained the temporal and spatial components of ##E^{\alpha}## and ##B^{\alpha}##. The expressions are obtained from the following equations:

$$E^{\alpha}=F^{\alpha\beta}U_{\beta},\: B^{\alpha}=\frac{1}{2c}\epsilon^{\alpha\beta\mu\nu}F_{\beta\mu}U_{\nu}$$

I obtained:
\begin{align*}
E^{0}&=F^{00}U_{0}+F^{0i}U_{i}=\frac{\gamma(u)}{c}\left(\vec{E}\cdot\vec{u}\right)\\
E^{i}&=F^{i0}U_{0}+F^{ij}U_{j}=\gamma(u)\left[\vec{E}+\left(\vec{u}\times\vec{B}\right)\right]^{i}\\
B^{0}&=\frac{1}{2c}\epsilon^{0\beta\mu\nu}F_{\beta\mu}U_{\nu}=-\frac{\gamma(u)}{c}\left(\vec{B}\cdot\vec{u}\right)\\
B^{i}&=\frac{1}{2c}\epsilon^{i\beta\mu 0}F_{\beta\mu}U_{0}+\frac{1}{2c}\epsilon^{i\beta\mu j}F^{\beta\mu}U_{j}=\gamma(u)\left[\vec{B}-\frac{\vec{u}}{c^2}\times\vec{E}\right]^{i}
\end{align*}

I interpreted the above components as that of fields observed by a stationary observer. To show that the fields transform correctly I have to show that:
$$\vec E' = \gamma \left( \vec E + c\vec \beta \times \vec B\right) - \frac{\gamma^2}{\gamma +1} \vec \beta \left( \vec\beta \cdot \vec E \right )$$
$$\vec B' = \gamma \left( \vec B - \frac{\vec \beta}{c} \times \vec E\right) - \frac{\gamma^2}{\gamma +1} \vec \beta \left( \vec\beta \cdot \vec B \right )$$

i.e. I have to show that I am able to construct the RHS from the components I have found. However, I do not seem to be able to show that using the Lorentz transformation equations under general boost. The Lorentz transformation equations under general boost is given as:
$$A^{'0}=\gamma\left(A^0-\vec{\beta}\cdot\vec{A}\right)$$
$$\vec{A}'_{\parallel}=\gamma\left(\vec{A}_{\parallel}-\vec{\beta}A^0\right)$$
$$\vec{A}'_{\perp}=\vec{A}_{\perp}$$

How should I proceed?
 
Physics news on Phys.org
The formula without ##\gamma^2## terms seem correct Lorentz transformation. How do you estimate these terms necessary ?
 
What do you mean?
 
\vE¯∥=\vE∥,\vE¯⊥=γ(\vE⊥+\vv×\vB⊥)I am sorry to say my post #1 was wrong.

Electric fields and magnetic fields from electromagnetic tensor comes from
E_{i}=cF_{0i},\ B_i=-\frac{1}{2}\epsilon_{ijk}F^{jk}

I wonder whether it is same as your formula in post #1 and what are ##E^0## and ##B^0##?
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...