Tugging on a Chain: Earth-Moon Connection Explored

  • Thread starter Thread starter OSalcido
  • Start date Start date
  • Tags Tags
    Moon
OSalcido
Messages
66
Reaction score
0
Imagine a solid chain from the Earth to the moon's surface (which I believe is 1.5 light seconds away).

Now Imagine two scenarios.
First scenario is that the chain is attached directly to the moon's surface.
Second scenario is the chain is unattached.

What happens if I tug on the chain in both scenarios? If information travels at the speed of light, how does the universe know whether I should be able or unable to pull the chain at that moment?
 
Physics news on Phys.org
What happens if I tug on the chain in both scenarios?
A shock wave creeps up the chain with a speed of ~5km/s. A highly sophisticated interferometer at the moon might have a chance (well, not really) to detect it one day later.
 
The answer is that no material is completely rigid and both the chains will initially stretch (by the same amount) when tugged. For the time it takes the shock wave to get to the other end of the chain (A minimum of 1.5 seconds but in practice a lot longer because shock waves in a material travel at the speed of sound in that material) the chains will both behave the same, with the end you are tugging moving while the far end is stationary.

In practice it would be difficult to find a material that will not stretch and break under its own weight even before tugging. Google for "space lift" or "space elevator" to see a related subject.
 
ah so that's what they mean when they talk about rigid bodies

thank you both :)
 
Btw, that 5km/s that Ich was talking about is the speed of sound in metal (didn't check the number, but it sounds reasonable).
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top