- #1
- 3
- 0
Hi, I have a question about two different expressions of Jaynes-Cummings Hamiltonian
[itex]H=\Delta_c a^{\dagger}a+\Delta_a \sigma_{+} \sigma_{-} +
g (a^{\dagger}\sigma_{-} +a\sigma_{+} )[/itex]
and
[itex]H=\Delta_c a^{\dagger}a+\Delta_a \sigma_{+} \sigma_{-} +i
g (a^{\dagger}\sigma_{-} -a\sigma_{+} )[/itex].[itex](\hbar=1)[/itex]
I read them from different papers and books.
Why are they equal, and how to derive one from another?
How to choose the appropriate expression when utilizing the Jaynes-Cummings Hamiltonian?
Thanks!
[itex]H=\Delta_c a^{\dagger}a+\Delta_a \sigma_{+} \sigma_{-} +
g (a^{\dagger}\sigma_{-} +a\sigma_{+} )[/itex]
and
[itex]H=\Delta_c a^{\dagger}a+\Delta_a \sigma_{+} \sigma_{-} +i
g (a^{\dagger}\sigma_{-} -a\sigma_{+} )[/itex].[itex](\hbar=1)[/itex]
I read them from different papers and books.
Why are they equal, and how to derive one from another?
How to choose the appropriate expression when utilizing the Jaynes-Cummings Hamiltonian?
Thanks!
Last edited: