Two exercises on complex sequences (one about Mandelbrot set)

Click For Summary

Homework Help Overview

The discussion revolves around two exercises related to complex sequences, specifically focusing on limits of powers of complex numbers and properties of the Mandelbrot set.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the limit of the sequence ##\alpha^n## for cases where ##|\alpha|<1## and ##|\alpha|>1##, with some expressing uncertainty about the latter case. There is also an attempt to understand the boundedness of the sequence defined by the Mandelbrot set.

Discussion Status

Some participants have provided insights and hints regarding the limit of ##\alpha^n## when ##|\alpha|<1##, while others are questioning how to demonstrate the boundedness of the sequence in relation to the Mandelbrot set. There is an ongoing exploration of patterns in the sequence and the implications of certain values of ##c##.

Contextual Notes

Participants are working under the constraints of homework rules, which may limit the information they can use or the methods they can apply. There is a focus on deriving expressions and understanding the behavior of sequences without reaching definitive conclusions.

mahler1
Messages
217
Reaction score
0
Homework Statement .

I am trying to solve two exercises about complex sequences:

1) Let ##\alpha \in \mathbb C##, ##|\alpha|<1##. Which is the limit ##\lim_{n \to \infty} \alpha^n##?, do the same for the case ##|\alpha|>1##.

2) Let ##\mathcal M## be the set of the complex numbers ##c## such that the sequence defined recursively by: ##z_0=0##, ##z_{n+1}={z_n}^2+c## is bounded (##\mathcal M## is called the Mandelbrot set). Prove that ##\mathcal M \subset \{|z|\leq 2\}##

The attempt at a solution.

For point 1) what I did was: if ##|\alpha|<1##, I can express ##\alpha## in its exponential form, so ##\alpha=re^{iθ}## for ##0<r<1## and ##0\leq θ<2\pi##. Then, ##\alpha^n=r^ne^{niθ}##. Let's show that ##\alpha^n \to 0##, ##0\leq |r^ne^{niθ}|=|r^n(\cos(θ)+i\sin(θ))|\leq 2|r|^n \to 0##.

I don't know what to do for the case ##|\alpha|>1##. In this case, if I consider the vector from the point ##(0,0)## to ##(a,b)##, where ##\alpha^n=a+ib##, then the length of the vector tends to infinity. But I don't what to say about the limit of ##\alpha^n##. From my observation, I could conclude that ##|\alpha^n| \to \infty##. Would this imply that the sequence ##\{\alpha^n\}_{n \in \mathbb N}## doesn't have a limit?.

For point 2), I don't have any idea how to prove this. Suppose ##\mathcal M \not \subset \{|z|\leq 2\}##. Then, there is some ##c \in \mathcal M : |c|>2##. How could I prove that the sequence ##\{z_n\}_{n \in \mathbb N}## is not bounded?
 
Physics news on Phys.org
mahler1 said:
Homework Statement .

I am trying to solve two exercises about complex sequences:

1) Let ##\alpha \in \mathbb C##, ##|\alpha|<1##. Which is the limit ##\lim_{n \to \infty} \alpha^n##?, do the same for the case ##|\alpha|>1##.

2) Let ##\mathcal M## be the set of the complex numbers ##c## such that the sequence defined recursively by: ##z_0=0##, ##z_{n+1}={z_n}^2+c## is bounded (##\mathcal M## is called the Mandelbrot set). Prove that ##\mathcal M \subset \{|z|\leq 2\}##

The attempt at a solution.

For point 1) what I did was: if ##|\alpha|<1##, I can express ##\alpha## in its exponential form, so ##\alpha=re^{iθ}## for ##0<r<1## and ##0\leq θ<2\pi##. Then, ##\alpha^n=r^ne^{niθ}##. Let's show that ##\alpha^n \to 0##, ##0\leq |r^ne^{niθ}|=|r^n(\cos(θ)+i\sin(θ))|\leq 2|r|^n \to 0##.

Yes.

Note however that ##|r^n e^{ni\theta}| = r^n##. This is a better approximation. But your method was good too.

I don't know what to do for the case ##|\alpha|>1##. In this case, if I consider the vector from the point ##(0,0)## to ##(a,b)##, where ##\alpha^n=a+ib##, then the length of the vector tends to infinity. But I don't what to say about the limit of ##\alpha^n##. From my observation, I could conclude that ##|\alpha^n| \to \infty##. Would this imply that the sequence ##\{\alpha^n\}_{n \in \mathbb N}## doesn't have a limit?.

Yes.

For point 2), I don't have any idea how to prove this. Suppose ##\mathcal M \not \subset \{|z|\leq 2\}##. Then, there is some ##c \in \mathcal M : |c|>2##. How could I prove that the sequence ##\{z_n\}_{n \in \mathbb N}## is not bounded?

Take ##|c|>2##. Maybe you could start with writing out the first 5 or 6 terms of the ##z_n## sequence to see if you can find some pattern. Of course you only care about the norm of ##z_n##, since you need to show that goes to infinity.
 
  • Like
Likes   Reactions: 1 person
R136a1 said:
Yes.

Note however that ##|r^n e^{ni\theta}| = r^n##. This is a better approximation. But your method was good too.Take ##|c|>2##. Maybe you could start with writing out the first 5 or 6 terms of the ##z_n## sequence to see if you can find some pattern. Of course you only care about the norm of ##z_n##, since you need to show that goes to infinity.

Thanks for the first remark. Now, for the second part, I did write the first terms of the sequence but I can't arrive to an expression that helps me to prove what I want to. I mean, I would like to express ##|z_n|=z^n|c|## with ##z>1## or get to a similar expression in order to conclude that the norm tends to infinity. Could you give me another hint for that?
 
You have

|z_0| = 0
|z_1| = |c|
|z_2| = |z_1^2 + c| \ |c| |c+1|\geq |c|
|z_3| = |(c^2 + c)^2 + c| = |c^2 (c +1)^2 + c| = |c| |c(c+1)^2 + 1|\geq |c|( |c|^2 |c+1|^2 - 1) \geq |c| (|c|^2 -1) \geq |c|^2

where I make fundamental use of the inequality ##|a-b| \geq ||a| - |b||##.
 
  • Like
Likes   Reactions: 1 person

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
Replies
20
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K