Two masses on a rotating platform

Click For Summary
SUMMARY

The discussion revolves around calculating the angular velocity of two masses on a rotating platform, specifically addressing the challenges faced in applying conservation of energy principles. The user identified the distance from the rotational axis as R+0.52 m and the height as h = 0.3 m. They attempted to use the conservation of energy equation 1/2 m v^2 = 2mgh and the relationship v = ωr, but encountered discrepancies in their calculations. The suggestion to analyze a free body diagram (FBD) and consider centripetal force as a method to determine angular velocity was confirmed as a more effective approach.

PREREQUISITES
  • Understanding of angular velocity and its relationship with linear velocity (v = ωr).
  • Familiarity with free body diagrams (FBD) in physics.
  • Knowledge of centripetal force and acceleration concepts.
  • Basic principles of conservation of energy in mechanical systems.
NEXT STEPS
  • Study the derivation and application of centripetal force equations in rotating systems.
  • Learn how to construct and analyze free body diagrams (FBD) for complex mechanical systems.
  • Explore the implications of energy conservation in non-conservative systems.
  • Investigate the moment of inertia and its role in rotational dynamics.
USEFUL FOR

Students and educators in physics, mechanical engineers, and anyone involved in analyzing rotational dynamics and energy conservation in mechanical systems.

robtum
Messages
2
Reaction score
0
Homework Statement
Two masses m are attached to opposite ends of an ideal piece of string
(massless, flexible) that rests on two frictionless, massless pulleys. The pulleys are fixed
to a rotating platform. The masses are stable when the platform stands still (does not
rotate), and the string hangs vertically from the pulleys. The platform is then carefully
rotated about the axis in the middle, such that the two ends of the string both form the
same angle φ with respect to vertical.
[Numerical values: m = 0.5 kg; R = 0.3 m; L = 0.6 m; g = 9.8 m/s2]

(a) What is the tension in the string when the masses hang vertically, i.e. before the platform starts rotating?
(b) Find the angular velocity ω so that the angle φ = 60◦.
(c) What is the tension in the string given the conditions in (b)?
Relevant Equations
U = mgh
v = ωr
a = ω^2 r
K = 1/2 m v^2
I'm having some trouble figuring this problem out. I've found the tension in (a) but I don't know where to start with (b). I've found that the distance between one of the masses and the rotational axis on the picture is R+0.52 m and that the masses rise to a height of h = 0.3 m.

The moment of inertia for the platform isn't given, so I don't know how to figure out the angular velocity. I tried using conservation of energy, that is 1/2 m v^2 = 2mgh, and the formula v = ωr. I've also tried using the tension in the strings, so that ω = sqrt((T sin(φ))/(m(R+0.52))) where T is the tension in the string but that value of ω doesn't match up with the value I get using conservation of energy. Any ideas on what I've done wrong?
 

Attachments

  • 1669745154305.png
    1669745154305.png
    5 KB · Views: 169
Physics news on Phys.org
Maybe you don't need the moment of inertia of the platform. I suggest that you draw and analyze a free body diagram (FBD) of one of the masses when its string is at the given angle.

Why do you think energy is conserved? From what point A to what other point B is kinetic plus potential energy the same?
 
kuruman said:
Maybe you don't need the moment of inertia of the platform. I suggest that you draw and analyze a free body diagram (FBD) of one of the masses when its string is at the given angle.

How did you use energy conservation, from what point A to what other point B?
Point A would've been when the masses are at rest like in part (a) and B is when the platform is rotating and the string is at the given angle. I realize now that the mechanical energy most likely isn't conserved at those two points though. There must be some work put into the system to make it rotate thus changing the mechanical energy, right? So would the better method be finding the centripetal force using a FBD and using the centripetal acceleration to find the angular velocity?
 
robtum said:
So would the better method be finding the centripetal force using a FBD and using the centripetal acceleration to find the angular velocity?
Yes.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
881
  • · Replies 6 ·
Replies
6
Views
901
Replies
23
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K