Two-Phase Pressure Drop (I need an expert)

  • Thread starter Thread starter mastermechanic
  • Start date Start date
  • Tags Tags
    Pressure drop
Click For Summary
The discussion focuses on finding an accurate pressure drop correlation for horizontal flow of an air-oil mixture, specifically in a slug flow regime. The user has tested seven different correlations but is experiencing significant discrepancies in results, particularly between the first five correlations based on the homogeneous flow assumption and the last two, which are designed for slug flow. Despite Müller and Afshin's correlations being touted as accurate for slug flow, the user is skeptical due to unexpected high pressure drop values. Additionally, the user notes that the Lockhart-Martinelli method shows minimal variation across test points, which may be due to its limitations for mass fluxes below 100. The user seeks expert advice on whether to continue using homogeneous flow models or consider alternative approaches.
mastermechanic
Messages
107
Reaction score
15
Hello everyone,

I have been trying to find a relatively accurate pressure drop correlation for horizontal flow of air-oil mixture. I have been testing 7 correlation in my test points however I am still hesitated to select the appropriate one based on the results.

System Props:
* D_pipe:
17.63 mm
* Liquid density: 887 kg/m3
* Total Mass Flux (G): 150-300 kg/m2.s
* Gas density: 0.08-1.4 kg/m3
* T_mix: 423 K
* Mass quality (x) is very low: x<< 0.1 (However, due to low air density void fraction is high)
* Superficial reynolds # (Liquid-Gas): Mostly Laminar - Laminar or Turbulent - Laminar
* Flow pattern: Mostly Slug
* Tested Correlations:
1-) Lockhart - Martinelli
2-) Homogenous Flow w/ Blasius friction
3-) Homogenous Flow w/ Churchill friction
4-) Friedel
5- ) Chisholm's two-phase friction multiplier
6-) Müller-Steinhagen & Heck
7-) Afshin Ghajar's modification of Müller's correlationPROBLEM: I have tested these correlation through my test points but as you can see in the graph below there is a huge discrepancy between (1-2-3-4-5) and (6-7). The reason behind it is because first five correlations are based on homogenous flow (HFM) assumption however my test range is mostly slug flow. Müller and Afshin correlations are claimed to be accurate in this range but the results also seem too much to me.

plot.PNG

* I didn't quite capture why the increase and decrease trends of HFM and (6-7) are inverse at some regions.

* Although my test range has lost of parameters that all change throughout the mission points, the lockhart-martinelli nearly didn't change at all. (L-M method is usually suggested for G<100 maybe thats the reason)

* The pipeline is in fact has some bends and slight inclinations at some points so I would not expect any laminar behavior in contrast to what Re numbers tell us.

Overall, although I am sure of the flow pattern and Muller's correlation is claimed to be most accurate over the entire flow patterns, the large difference and high pressure drop made me suspicious since all other correlations (although they're HFM) are laid well below. I have been thinking if I am doing wrong, if I can model the flow via HFM)

I am waiting for your valuable comments and help to select appropriate correlation.

Thanks in advance,
 
Thread 'Local pressures in turbocharger housing?'
This is question for fluid mechanics. Static pressure in the exhaust manifold(turbo car engine) is usually 1.2 to 2.5 times higher than the boost pressure(intake manifold pressure).Boost pressure is around 1bar guage pressure(2bar absolute). Can the local static pressure somewhere inside a turbine housing ever be lower than atmospheric pressure, is this possible? here some links where CFD is used...

Similar threads

Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 73 ·
3
Replies
73
Views
16K
  • · Replies 9 ·
Replies
9
Views
8K
  • · Replies 20 ·
Replies
20
Views
10K
Replies
7
Views
9K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
2K