tony873004
Science Advisor
Gold Member
- 1,753
- 143
I was in Hawaii in 1991, and Shanghai in 2009. Both times it rained during totality. In Hawaii, there were patches of clear sky, but just not where the Sun was. I don't remember seeing any stars or planets. The sky was not pitch black. It was like the same brightness as 25 minutes after sunset. If I had to walk back to my car during totality, I would not have needed a flashlight. It's possible that all the clouds in the vicinity that were not experiencing totality let a lot of light bleed in.
In Shanghai, the sky was completely clouded over. It got dark like midnight, but the clouds may have had a lot to do with that. In both cases, I was near centerline, and the eclipse path was very wide, producing about 6 minutes of totality.
My guess is that for the darkest eclipse, you want to be in an area that is cloud-free for a few hundred kilometers, a wide eclipse path, and close to the centerline.
The August eclipse will not have a wide path. Even at mid-eclipse on the centerline, you will be only 30 miles away from areas not experiencing totality. Any clouds in those areas will be visible to you and reflecting direct sunlight.
In 2012 I was near Redding, CA for an annular eclipse. The sky was cloud-free. The Moon was rather small compared to the Sun. At the height of annularity, the sky darkened to about the level of perhaps 1 minute before sunset. I had no trouble spotting Venus. I wasn't even looking for it. It just stood out.
I've read that it takes up to 30 minutes for your eyes to fully dark-adapt. A few years ago, I was a volunteer at my University's planetarium, and experimented with this. I found about 10 minutes was all it took. Maybe they got a little more sensitive over the next 20 minutes, but I didn't notice it. I also noticed that it takes a few minutes for your eyes to un-adapt. For example, with dark-adapted eyes, I stepped out into the hall for a minute. The late-afternoon sun made the hall very bright. But when I returned to the darkened planetarium, my eyes were still dark adapted.
For August's eclipse, I'll probably wear dark sunglasses (maybe even 2 pairs!) during the partial phase, and have a handheld solar filter. As totality approaches, I'll try to get as dark-adapted as possible. It's tempting to look up at the partial phases. There's the Moon creeping across the Sun. How cool is that! But remember, after totality, it will repeat the partial phases for you. In the 2012 Annular eclipse, everyone was watching the partial phases leading up to annularity, then when annularity ended, they all got in their cars and left. Of the 100+ people at my observing location, there were only a handful of us who stayed to watch the waning partial phases.
I'm not going to participate in the activity of trying to spot constellations. Totality lasts only 2 minutes. This is the only opportunity I have to see the corona. I'll probably use unfiltered binoculars for a better view. I may take a quick glance just to gauge the darkness of the sky, but if I want to look at constellations, I can do that any night!
I may set up a 360 degree video camera and just let it run. I don't want to be playing with camera equipment during totality. No matter how nice my photos may turn out, lots of people with better equipment are going to get much better pictures, and they'll be posted all over the internet the next day.
The brightness in my simulation is just a guess based on having seen 3 annular eclipses, many partial eclipses, and 2 total (but raining) eclipses. I was aiming for what a user may perceive. For example, when the Moon is half covering the Sun, I imagine a light meter would tell me that my surroundings were half as bright. But the human eye doesn't see that. Your eyes sense brightness approximately logarithmically and your pupils dilate making it hard to tell the difference. Until the Sun is about 90% covered, an unsuspecting person won't notice anything unusual. So in my simulation, there's not much difference in the sky brightness with the Sun half covered. In my simulation, even after totality begins, the sky continues to darken until mid-eclipse. I'm guessing that deeper in the umbra is darker, as I am farther away from areas that are outside totality.
In Shanghai, the sky was completely clouded over. It got dark like midnight, but the clouds may have had a lot to do with that. In both cases, I was near centerline, and the eclipse path was very wide, producing about 6 minutes of totality.
My guess is that for the darkest eclipse, you want to be in an area that is cloud-free for a few hundred kilometers, a wide eclipse path, and close to the centerline.
The August eclipse will not have a wide path. Even at mid-eclipse on the centerline, you will be only 30 miles away from areas not experiencing totality. Any clouds in those areas will be visible to you and reflecting direct sunlight.
In 2012 I was near Redding, CA for an annular eclipse. The sky was cloud-free. The Moon was rather small compared to the Sun. At the height of annularity, the sky darkened to about the level of perhaps 1 minute before sunset. I had no trouble spotting Venus. I wasn't even looking for it. It just stood out.
I've read that it takes up to 30 minutes for your eyes to fully dark-adapt. A few years ago, I was a volunteer at my University's planetarium, and experimented with this. I found about 10 minutes was all it took. Maybe they got a little more sensitive over the next 20 minutes, but I didn't notice it. I also noticed that it takes a few minutes for your eyes to un-adapt. For example, with dark-adapted eyes, I stepped out into the hall for a minute. The late-afternoon sun made the hall very bright. But when I returned to the darkened planetarium, my eyes were still dark adapted.
For August's eclipse, I'll probably wear dark sunglasses (maybe even 2 pairs!) during the partial phase, and have a handheld solar filter. As totality approaches, I'll try to get as dark-adapted as possible. It's tempting to look up at the partial phases. There's the Moon creeping across the Sun. How cool is that! But remember, after totality, it will repeat the partial phases for you. In the 2012 Annular eclipse, everyone was watching the partial phases leading up to annularity, then when annularity ended, they all got in their cars and left. Of the 100+ people at my observing location, there were only a handful of us who stayed to watch the waning partial phases.
I'm not going to participate in the activity of trying to spot constellations. Totality lasts only 2 minutes. This is the only opportunity I have to see the corona. I'll probably use unfiltered binoculars for a better view. I may take a quick glance just to gauge the darkness of the sky, but if I want to look at constellations, I can do that any night!
I may set up a 360 degree video camera and just let it run. I don't want to be playing with camera equipment during totality. No matter how nice my photos may turn out, lots of people with better equipment are going to get much better pictures, and they'll be posted all over the internet the next day.
The brightness in my simulation is just a guess based on having seen 3 annular eclipses, many partial eclipses, and 2 total (but raining) eclipses. I was aiming for what a user may perceive. For example, when the Moon is half covering the Sun, I imagine a light meter would tell me that my surroundings were half as bright. But the human eye doesn't see that. Your eyes sense brightness approximately logarithmically and your pupils dilate making it hard to tell the difference. Until the Sun is about 90% covered, an unsuspecting person won't notice anything unusual. So in my simulation, there's not much difference in the sky brightness with the Sun half covered. In my simulation, even after totality begins, the sky continues to darken until mid-eclipse. I'm guessing that deeper in the umbra is darker, as I am farther away from areas that are outside totality.


