- #1
Mr Davis 97
- 1,462
- 44
Homework Statement
##\displaystyle \int \frac{\ln x}{x(1 + \ln x)} dx##
Homework Equations
The Attempt at a Solution
[/B]
Let ##u = 1 + \ln x##, then ##\ln x = u - 1##
##\displaystyle du = \frac{1}{x}dx##
Thus, ##\displaystyle \int \frac{\ln x}{x(1 + \ln x)} dx = \int \frac{u - 1}{u} du= \int 1 - u^{-1} du = u - \ln u + C = 1 + \ln x - \ln \left | \ln x + 1\right | + C##
However, this is the wrong answer. What am I doing wrong?