I Understanding a quote about implicit differentiation

mcastillo356
Gold Member
Messages
636
Reaction score
342
TL;DR Summary
I've got a solved calculation of the inverse tangent function by implicit differentiation I'm trying to understand
Hi PF

A personal translation of a quote from Spanish "Calculus", by Robert A. Adams:
Inverse tangent function derivative can be also obtained by implicit differentiation: if y=tan−1⁡x, then x=tan⁡y, and 1=(sec2⁡y)dydx=(1+tan2⁡y)dydx=(1+x2)dydx Hence, ddxtan−1⁡x=11+x2
It's about advice on Lebniz's notation1=(sec2⁡y)dydx means dxdx=(sec2⁡y)dydx, I'm quite sure. Why (sec2⁡y)dydx=(1+tan2⁡y)dydx? But I'm also quite sure that the right notation for (sec2⁡y)dydx=(1+tan2⁡y)dydx would be (sec2⁡y)ddx=(1+tan2⁡y)ddx
 
Mathematics news on Phys.org
##sec^2y = 1 + tan^2 y## is one of the most important trig identities.
 
  • Informative
Likes mcastillo356
Sorry, I've posted nonsense: I was trying to be clever about Leibniz's notation: impose my personal point of view. I've got troubles posting and editing. My weird opinion was... Well, I will post again, and then my unfounded opinion:

Quote from the book:

The derivative of the inverse tangent function can be calculated also by implicit differentiation: if ##y=\tan^{-1} x##, then ##x=\tan y##, and

$$1=(\sec^2 y)\dfrac{dy}{dx}=(1+\tan^2 y)\dfrac{dy}{dx}=(1+x^2)\dfrac{dy}{dx}$$

Hence

$$\dfrac{d}{dx}\tan^{-1}x=\dfrac{1}{1+x^2}$$

My botched job: set notations like ##(\sec^2 y)\dfrac{d}{dx}##

I am not native. Forgive my English.

Greetings!
 
Sorry, I've posted nonsense: I was trying to be clever about Leibniz's notation: impose my personal point of view. I've got troubles posting and editing. My weird opinion was... Well, I will post again, and then my unfounded opinion:

Quote from the book:

The derivative of the inverse tangent function can be calculated also by implicit differentiation: if ##y=\tan^{-1} x##, then ##x=\tan y##, and

$$1=(\sec^2 y)\dfrac{dy}{dx}=(1+\tan^2 y)\dfrac{dy}{dx}=(1+x^2)\dfrac{dy}{dx}$$

Hence

$$\dfrac{d}{dx}\tan^{-1}x=\dfrac{1}{1+x^2}$$

My botched job: set notations like ##(\sec^2 y)\dfrac{d}{dx}##

I am not native. Forgive my English.

Greetings!
 
  • Like
Likes jedishrfu and Delta2
What's the problem with that? It all looks good to me.
 
  • Like
  • Informative
Likes mcastillo356, PhDeezNutz and Delta2
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top