I Understanding a quote about implicit differentiation

AI Thread Summary
The discussion centers on the derivative of the inverse tangent function, which can be derived using implicit differentiation. The key equation presented is that if y = tan⁻¹(x), then x = tan(y), leading to the expression 1 = (sec²y)(dy/dx) = (1 + tan²y)(dy/dx) = (1 + x²)(dy/dx). The conclusion drawn is that the derivative of tan⁻¹(x) is 1/(1 + x²). The conversation also touches on the challenges of using Leibniz's notation and the importance of clarity in mathematical expressions. Overall, the participants emphasize the validity of the implicit differentiation method for this function.
mcastillo356
Gold Member
Messages
639
Reaction score
348
TL;DR Summary
I've got a solved calculation of the inverse tangent function by implicit differentiation I'm trying to understand
Hi PF

A personal translation of a quote from Spanish "Calculus", by Robert A. Adams:
Inverse tangent function derivative can be also obtained by implicit differentiation: if y=tan−1⁡x, then x=tan⁡y, and 1=(sec2⁡y)dydx=(1+tan2⁡y)dydx=(1+x2)dydx Hence, ddxtan−1⁡x=11+x2
It's about advice on Lebniz's notation1=(sec2⁡y)dydx means dxdx=(sec2⁡y)dydx, I'm quite sure. Why (sec2⁡y)dydx=(1+tan2⁡y)dydx? But I'm also quite sure that the right notation for (sec2⁡y)dydx=(1+tan2⁡y)dydx would be (sec2⁡y)ddx=(1+tan2⁡y)ddx
 
Mathematics news on Phys.org
##sec^2y = 1 + tan^2 y## is one of the most important trig identities.
 
  • Informative
Likes mcastillo356
Sorry, I've posted nonsense: I was trying to be clever about Leibniz's notation: impose my personal point of view. I've got troubles posting and editing. My weird opinion was... Well, I will post again, and then my unfounded opinion:

Quote from the book:

The derivative of the inverse tangent function can be calculated also by implicit differentiation: if ##y=\tan^{-1} x##, then ##x=\tan y##, and

$$1=(\sec^2 y)\dfrac{dy}{dx}=(1+\tan^2 y)\dfrac{dy}{dx}=(1+x^2)\dfrac{dy}{dx}$$

Hence

$$\dfrac{d}{dx}\tan^{-1}x=\dfrac{1}{1+x^2}$$

My botched job: set notations like ##(\sec^2 y)\dfrac{d}{dx}##

I am not native. Forgive my English.

Greetings!
 
Sorry, I've posted nonsense: I was trying to be clever about Leibniz's notation: impose my personal point of view. I've got troubles posting and editing. My weird opinion was... Well, I will post again, and then my unfounded opinion:

Quote from the book:

The derivative of the inverse tangent function can be calculated also by implicit differentiation: if ##y=\tan^{-1} x##, then ##x=\tan y##, and

$$1=(\sec^2 y)\dfrac{dy}{dx}=(1+\tan^2 y)\dfrac{dy}{dx}=(1+x^2)\dfrac{dy}{dx}$$

Hence

$$\dfrac{d}{dx}\tan^{-1}x=\dfrac{1}{1+x^2}$$

My botched job: set notations like ##(\sec^2 y)\dfrac{d}{dx}##

I am not native. Forgive my English.

Greetings!
 
  • Like
Likes jedishrfu and Delta2
What's the problem with that? It all looks good to me.
 
  • Like
  • Informative
Likes mcastillo356, PhDeezNutz and Delta2
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top