I Understanding Classical Mechanics: Acceleration

AI Thread Summary
In classical mechanics, acceleration can be determined from coordinates and velocities due to the relationship defined by the equations of motion, assuming the generalized force depends solely on these variables. The discussion highlights that this dependency is a fundamental aspect of classical mechanics, enabling the calculation of acceleration without needing additional information at a single point in time. Clarification is provided that the assumption about the generalized force is crucial for this determination. The conversation also references a related question about uniquely defined accelerations, emphasizing the importance of understanding these foundational concepts. Overall, the discussion aims to clarify the reasoning behind the relationship between coordinates, velocities, and acceleration in classical mechanics.
Physicsphysics
Messages
17
Reaction score
2
I'm reading once again through Landau-Lifchitz and I am stuck on the first page! I can't wrap my head around why we only need to define the coordinates and velocities to determine the acceleration? Surely if we only know those two in a single point in time, that's not enough to determine an acceleration? What am I missing here? Thanks!
 
Physics news on Phys.org
From the equations of motion with given ##q## and ##\dot{q}## you get ##\ddot{q}##. Of course you need the assumption that the (generalized) force depends only on ##q## and ##\dot{q}## as usual in classical mechanics.
 
  • Like
Likes Physicsphysics
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top