MHB Understanding Complex Number Math: |iz^2|

Click For Summary
To find |iz^2| for a complex number z=rcis(theta), use the identity |z_1z_2|=|z_1|·|z_2|. The absolute value of i is 1, which simplifies the calculation. First, determine |z^2|, then multiply it by |i| to find |iz^2|. Understanding these properties of absolute values in complex numbers is crucial. This approach clarifies how to incorporate i into the absolute value calculation.
sweeper
Messages
1
Reaction score
0
Complex numbers
If z=rcis(theta) FIND: |iz^2|
I am confused about how I incorporate the i into the absolute value. I can't remember what it means. Please help and show exactly how I complete the workings. I can easily find the absolute value of z^2 I just really don't understand how to put the i into it.
Thank you!
 
Mathematics news on Phys.org
Hi, and welcome to the forum.

You should use the identity $|z_1z_2|=|z_1|\cdot|z_2|$. For the rest, please see this section on Wikipedia.
 
The absolute value of i is 1!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K