Understanding Euler's Method: Solving a Numerical Approximation Problem

Click For Summary
Euler's method is being discussed as a numerical approximation technique for solving differential equations, specifically for the equation (dx/dt) = -x with the initial condition x(0) = 1. The exact solution for x(1) is correctly identified as e^-1, but the initial attempt at using Euler's method with a step size of D=1 resulted in a poor approximation of x1=0. It is clarified that using smaller step sizes, such as D=10^-1, allows for more steps to be taken, improving the approximation significantly. The process involves updating both the x-value and the function value at each step, leading to a better approximation of e^-1 after multiple iterations. Understanding the importance of step size and iterative calculations is crucial for effectively applying Euler's method.
anb
Messages
3
Reaction score
0
Hi all. I've been having a bit of trouble just understanding Euler's method, which I need to know (and probably should have known for a while now) for a question on an assignment. I'm going to provide an example with confusing wording (at least to me) and show what I've done to try to understand it. I think I get it but I want to be absolutely sure.

Homework Statement



So for the question we have (dx/dt) = f(x) = -x with initial condition x(0) = 1. The first part asks us to give an exact solution to x(1). I believe the solution is (e^-1) and I'm not having trouble with this part (but if that's incorrect then maybe that's my problem - I reasoned that you could just separate variables and integrate both sides, giving -lnx=t+K for some constant K. x=1 at t=0 so K=0 since ln1=0. So then if t=1 and K=0, lnx=-1 which means x=e^-1).

The second part says "using Euler's method with step size D=1 [delta was used in the text but I can't seem to get a "Delta" symbol working], estimate x(1) numerically ... then repeat using D=(10^-n) for n=1,2,3..."

Homework Equations


The Attempt at a Solution



Now here's what I did. The text tells us that to approximate solutions with euler's method we use the recursion xn+1=xn+f(xn)*D. So I take x0=1 since x(0)=1 is the initial condition. Therefore f(x0)=-1 since f(x)=-x, and with D=t that gives us the approximation x1=0 (because this is such a poor approximation I assume I may have gone wrong here, ie maybe I just don't understand which values to plug where).

Now when it asks us to repeat with different step sizes D=(10^-n), I'm not sure if it means that for approximating xn+1 we should use D=(10^-n), or if the text is asking us to repeat using that step size for the approximation of x1. The latter doesn't really make sense to me, because that would lead to an even worse approximation for all n>0. My problem though is that if I repeat the incursion for n>0, I'm pretty sure I get
xn+1=0 for all n>1 since the approximation x1=0, so x2=x1+f(x1)*D=0 no matter what D is. I realize that this could still be the intended way of solving the problem, it just doesn't seem very nice because the actual step size doesn't matter and I'm used to having to use every part of a problem to solve it (and in this case the step size seems like a red herring).

Keep in mind I've never worked with euler's method before (shock), and I may just be over-thinking the problem
 
Physics news on Phys.org
It is not strange that you get a bad answer when you only do one step.

What you are supposed to do next is do the whole thing over but this time having a step size of 10^{-1}.
This means that you need to step 10 times to get to x = 1. This should give you a better approximation. Remember in every step you need to update both the x-value and the function value.

With n = 2 you do a hundred steps. If you know any programming you can automate this process (I don't think your teacher wants you to do it manually a hundred times).
 
Inferior89 said:
It is not strange that you get a bad answer when you only do one step.

What you are supposed to do next is do the whole thing over but this time having a step size of 10^{-1}.
This means that you need to step 10 times to get to x = 1. This should give you a better approximation. Remember in every step you need to update both the x-value and the function value.

With n = 2 you do a hundred steps. If you know any programming you can automate this process (I don't think your teacher wants you to do it manually a hundred times).

Oh, I think I understand now - so for a step size of 1/10 I should first get x1=9/10, which means at the next step I compute 9/10 + (1/10)f(9/10), and so on with the result of each step, ten times? (So for the step after I'd do 81/100 + (1/10)f(81/100), etc.?) After trying this out, I am getting a much better approximation of e^-1 after the tenth step.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
716
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
4
Views
4K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K