MHB Understanding inverse functions

Casio1
Messages
86
Reaction score
0
I have a graph f(x) = 3(x + 1)^2 - 12 , I have sketched this graph (Not shown) hand it is a parabola with a y- intercept at - 9. the vertex being - 12.

The image set is a closed interval {- 12, infinity} Sorry no square brackets and no sign for infinity.

I am asked to explain why the function of f does not have an inverse?

Given that the graph is a parabola I would have thought that the graph did have an inverse?

The domain {-3 < x < 1}

I am missing something here in the understanding if anyone can advise It would be much appreciated.

Sorry I didn't include a sketch the paint package won't allow me to draw a curve:o
 
Mathematics news on Phys.org
Casio said:
I have a graph f(x) = 3(x + 1)^2 - 12 , I have sketched this graph (Not shown) hand it is a parabola with a y- intercept at - 9. the vertex being - 12.

The image set is a closed interval {- 12, infinity} Sorry no square brackets and no sign for infinity.

I am asked to explain why the function of f does not have an inverse?

Given that the graph is a parabola I would have thought that the graph did have an inverse?

The domain {-3 < x < 1}

I am missing something here in the understanding if anyone can advise It would be much appreciated.

Sorry I didn't include a sketch the paint package won't allow me to draw a curve:o

A function is single valued, so for your f(x) to have an inverse for every y in its range there must be one and only one x in its domain such that y=f(x).

That is every horizontal line y=u that cuts the curve y=f(x) cuts it in one point only.

CB
 
CaptainBlack said:
A function is single valued, so for your f(x) to have an inverse for every y in its range there must be one and only one x in its domain such that y=f(x).

That is every horizontal line y=u that cuts the curve y=f(x) cuts it in one point only.

CB

Thanks CB
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top