- #1
- 8,237
- 5,117
I've having trouble understanding one of the consequences of using the length gauge.
The length gauge is obtained by the gauge transformation ##\mathbf{A} \rightarrow \mathbf{A} + \nabla \chi## with ##\chi = - \mathbf{r} \cdot \mathbf{A}##. Starting from the Coulomb gauge, we have
$$
\begin{align*}
\mathbf{A}_\mathrm{L} &= \mathbf{A}_\mathrm{C} + \nabla( -\mathbf{r} \cdot \mathbf{A}_\mathrm{C} ) \\
&= \mathbf{A}_\mathrm{C} - \mathbf{A}_\mathrm{C} = 0
\end{align*}
$$
How can I reconcile this with ##\mathbf{B} = \nabla \times \mathbf{A}##? It appears that there can be no magnetic field in the length gauge, while the gauge transformation leaves the magnetic field unchanged...
The length gauge is obtained by the gauge transformation ##\mathbf{A} \rightarrow \mathbf{A} + \nabla \chi## with ##\chi = - \mathbf{r} \cdot \mathbf{A}##. Starting from the Coulomb gauge, we have
$$
\begin{align*}
\mathbf{A}_\mathrm{L} &= \mathbf{A}_\mathrm{C} + \nabla( -\mathbf{r} \cdot \mathbf{A}_\mathrm{C} ) \\
&= \mathbf{A}_\mathrm{C} - \mathbf{A}_\mathrm{C} = 0
\end{align*}
$$
How can I reconcile this with ##\mathbf{B} = \nabla \times \mathbf{A}##? It appears that there can be no magnetic field in the length gauge, while the gauge transformation leaves the magnetic field unchanged...