The
nth stationary state is:
<br />
\psi_{n}(x) = \left\{\begin{array}{cl}<br />
\sqrt{\frac{2}{L}} \, \sin\left(\frac{n \pi x}{L}\right) &, \ 0 \le x \le L \\<br />
<br />
0 &, x < 0 \vee x > L<br />
\end{array}\right., \ n = 1, 2, \ldots<br />
The momentum eigenfuniction is:
<br />
\phi_{p}(x) = \frac{1}{(2 \pi \hbar)^{1/2}} \, e^{\frac{i \, p \, x }{\hbar}}, \ -\infty < x < \infty<br />
These momentum eigenfunctions (plane waves) form a complete orthonormal basis of functions and we can expand any function in them. Let us expand the
nth stationary state from above. The expansion is actually an integral and the coefficient is a function of the continuous parameter
p:
<br />
a(p) = \int_{-\infty}^{\infty}{\phi^{\ast}_{p}(x) \, \psi_{n}(x) \, dx}<br />
<br />
a(p) = \frac{1}{(2 \pi \, \hbar)^{1/2}} \, \left(\frac{2}{L}\right)^{1/2} \, \frac{1}{2 i} \left[ \int_{0}^{L}{\exp(i (\frac{n \pi}{L} - \frac{p}{\hbar}) \, x) \, dx} - \int_{0}^{L}{\exp(-i (\frac{n \pi}{L} + \frac{p}{\hbar}) \, x) \, dx}\right]<br />
<br />
a(p) = \frac{1}{2 i} \left( \frac{1}{\pi \hbar L} \right)^{1/2} \left[\frac{1}{i (\frac{n \pi}{L} - \frac{p}{\hbar})} - \frac{1}{-i (\frac{n \pi}{L} + \frac{p}{\hbar})}\right] \, ((-1)^{n} exp(-i \frac{p \, L}{\hbar}) - 1)<br />
<br />
a(p) = \frac{n \, \pi}{L} \left(\frac{1}{\pi \, \hbar \, L} \right)^{1/2} \, \frac{1 - (-1)^{n} \exp(-i \, \frac{p \, L}{\hbar})}{(\frac{n \, \pi}{L})^{2} - (\frac{p}{\hbar})^{2}}<br />
The square of the absolute value of these complex numbers gives the probability density for dfifferent values of
p. The only complex number is the expression in the numerator. We evaluate its square absolute value as:
<br />
\begin{array}{l}<br />
\left| 1 - (-1)^{n} \exp(-i \, \frac{p \, L}{\hbar}) \right|^{2} = \left( 1 - (-1)^{n} \exp(-i \, \frac{p \, L}{\hbar})\right) \left( 1 - (-1)^{n} \exp(i \, \frac{p \, L}{\hbar})\right) \\<br />
<br />
=1 - (-1)^{n} \exp(-i \, \frac{p \, L}{\hbar}) - (-1)^{n} \exp(i \, \frac{p \, L}{\hbar}) + 1 \\<br />
<br />
= 2 \left[ 1- (-1)^{n} \, \cos\left(\frac{p \, L}{\hbar}\right)\right]<br />
\end{array}<br />
<br />
|a(p)|^{2} = \frac{\frac{n^{2} \, \pi}{\hbar \, L{3}}}{\left(\frac{\pi}{L}\right)^{4}} \, \frac{2 \left[ 1- (-1)^{n} \, \cos\left(\frac{p \, L}{\hbar}\right)\right]}{\left[n^{2} - \left(\frac{p \, L}{\hbar \pi}\right)^{2}\right]^{2}}<br />
<br />
|a(p)|^{2} = \frac{L}{\hbar \, \pi} \, \frac{2 \left(\frac{n}{\pi}\right)^{2} \, \left[1 - (-1)^{n} \, \cos\left( \pi \, \frac{p \, L}{\hbar \, \pi}\right) \right]}{\left[n^{2} - \left(\frac{p \, L}{\hbar \pi}\right)^{2}\right]^{2}}<br />
The denominator has double zeros for:
<br />
\tilde{p} \equiv \frac{p \, L}{\hbar \, \pi} = \pm n<br />
These values correspond to the values for momentum that give "standing De Broglie's waves" with nodes at the walls of the potential well. However, the numerator is also zero for these values and the limit 0/0 can be evaluated by using the L'Hospital's Rule:
<br />
|a(\tilde{p}_{n})|^{2} = \frac{1}{4} \, \frac{L}{\hbar \, \pi}<br />
The plot of this probability distribution is given on the graph below (for n = 1, 2, 3):
As you can see, the distribution has a non-zero, but finite probability density any other (continuous) value for \tilde{p} as well.