Understanding Riemann Integrals of $\ln\ x$

  • Context: MHB 
  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integrals Riemann
Click For Summary
SUMMARY

The integral $\displaystyle \int_{0}^{1} \ln \ x \ dx$ is classified as an improper Riemann integral due to the unbounded nature of $\ln \ x$ on the interval $[0,1]$. However, it can be evaluated using the limit of a Riemann sum: $\displaystyle \int_{0}^{1} \ln \ x \ dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)$. The integral $\displaystyle \int_{a}^{1} \ln \ x \ dx$ for $0 PREREQUISITES

  • Understanding of improper integrals
  • Familiarity with Riemann sums
  • Knowledge of logarithmic functions
  • Basic calculus concepts, including limits
NEXT STEPS
  • Study the properties of improper integrals
  • Learn about Riemann sums and their applications
  • Explore the behavior of logarithmic functions on intervals
  • Investigate the convergence of series and limits in calculus
USEFUL FOR

Students and educators in calculus, mathematicians interested in integral calculus, and anyone seeking to deepen their understanding of improper integrals and logarithmic functions.

polygamma
Messages
227
Reaction score
0
$\displaystyle \int_{0}^{1} \ln \ x \ dx $ is not a proper Riemann integral since $\ln \ x $ is not bounded on $[0,1]$. Yet $ \displaystyle \int_{0}^{1} \ln \ x \ dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)$. Is this because $\ln \ x$ is monotone on $(0,1]$?
 
Physics news on Phys.org
Random Variable said:
$\displaystyle \int_{0}^{1} \ln \ x \ dx $ is not a proper Riemann integral since $\ln \ x $ is not bounded on $[0,1]$. Yet $ \displaystyle \int_{0}^{1} \ln \ x \ dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)$. Is this because $\ln \ x$ is monotone on $(0,1]$?

Hi Random Variable, :)

Yes, \(\displaystyle\int_{0}^{1} \ln \ x \ dx\) is an improper integral. However \(\displaystyle\int_{a}^{1} \ln \ x \ dx\mbox{ where }0<a<1\) is a proper Riemann integral and by the Rectangle method we can obtain,

\[\int_{a}^{1} \ln \ x \ dx = \lim_{n \to \infty}\left[\frac{1-a}{n}\sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)\right]=(1-a)\lim_{n \to \infty}\left[\frac{1}{n}\sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)\right]\]

Note that, \(\displaystyle\lim_{n \to \infty}\left[\frac{1}{n}\sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)\right]\) exists since \(\displaystyle\int_{a}^{1} \ln \ x \ dx\) is Riemann integrable. Therefore,

\[\int_{0}^{1} \ln \ x \ dx=\lim_{a\rightarrow 0^{+}}\int_{a}^{1} \ln \ x \ dx =\lim_{n \to \infty}\left[\frac{1}{n}\sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)\right]\]

So, \(\displaystyle\int_{0}^{1} \ln \ x \ dx\) is an improper integral and its value is equal to \(\displaystyle\lim_{n \to \infty}\left[\frac{1}{n}\sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)\right]\)

Kind Regards,
Sudharaka.
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K