MHB Understanding Rings: Example of Homomorphism/Isomorphism

  • Thread starter Thread starter corkycorey101
  • Start date Start date
  • Tags Tags
    Rings
corkycorey101
Messages
3
Reaction score
0
Can you give an example of two rings R and S, and a function f:R⟶S such that f(ab)=f(a)f(b) for all a,b ∈ R, but f(a+b)≠f(a)+f(b) for some a,b ∈ R. I know that it has to do with proving homomorphisms/isomorphisms but am confused how to come up with the actual example.
 
Physics news on Phys.org
Let $R = S =\Bbb Z$, the ring of integers, and set:

$f(k) = k^2$.
 
Oh wow, that was easier than I thought. I was way over thinking it. Thank you so much!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top