# Understanding the discrete time Fourier transformation

Luk

## Main Question or Discussion Point

Let's consider a signal which is continuous in both time and amplitude. Now we consider the amplitude of this signal at specific time instants only. This is my understanding of sampling a signal in time domain.

When performing a Fourier transform on a time discrete signal, we have to apply the DTFT. The DTFT sums upp all the samples multiplied by a complex exponential function. In this complex exponential function we multiply an angular frequency with the index k. Well, I'm not sure what this is all suppossed to tell me. But I especially can't get my head around the angular frequency, which is somehow normalized on the sampling rate. What does this mean?

Related Electrical Engineering News on Phys.org
Let's consider a signal which is continuous in both time and amplitude. Now we consider the amplitude of this signal at specific time instants only. This is my understanding of sampling a signal in time domain.

When performing a Fourier transform on a time discrete signal, we have to apply the DTFT. The DTFT sums upp all the samples multiplied by a complex exponential function. In this complex exponential function we multiply an angular frequency with the index k. Well, I'm not sure what this is all suppossed to tell me. But I especially can't get my head around the angular frequency, which is somehow normalized on the sampling rate. What does this mean?
Give these videos a try, they might have the answer you need.

I watched them quite a while ago and found the concepts very well explained and easy to follow.

sophiecentaur
Gold Member
But I especially can't get my head around the angular frequency
There is nothing magic about 'angular frequency'. You can describe a signal that's varying sinusoidally in time in terms of frequency f (the number of cycles per second) so
A = A0 sin(2πft) (or any other time dependent waveform)
OR in terms of the angular frequency, which is the number of radians of phase per second
A=A0 sin(ωt)
They are totally equivalent but a page full of 2π's is hard to read. So, to repeat, the angle that's referred to in 'angular frequency' is the rate of change (in radians) of phase of each of the Fourier components of the signal. Harmonics still have the same integer ratios for ω as for f.

If you can accept that any signal that's described in the temporal domain (i.e. scope trace) can also be described in the frequency domain. (Ordinary frequencies at this stage). If the waveform is repeated then the Fourier Transform consists of harmonics of the fundamental repeat frequency. If you only have time to analyse a finite length extracted out of the waveform then you have to assume that it repeats itself and you 'loop' the waveform. The only Fourier transform you can do on this signal is called a Discrete Fourier Transform and it introduces errors (artefacts) because of the truncation. You can improve on this by 'windowing' the waveform but that's another matter.

sophiecentaur