Understanding the generic nature of linearity in Physics

AI Thread Summary
The discussion focuses on the concept of linearity in physics, particularly in the context of potential energy and forces acting on particles. It explains how the Taylor series expansion of force derived from potential energy can reveal conditions for stable equilibrium, emphasizing that linearity holds for small displacements if certain derivatives of the potential are defined and non-zero. The conversation addresses specific questions about the implications of the Taylor expansion when derivatives vanish, leading to potential non-linear behavior. Additionally, it clarifies the meaning of constants in the potential energy equation and confirms the correctness of the force expression derived from it. Understanding these principles is crucial for analyzing oscillations around equilibrium in physical systems.
zenterix
Messages
774
Reaction score
84
Homework Statement
I'd like to understand an argument presented in the book "The Physics of Waves" by Howard Georgi.
Relevant Equations
The link to a free online version is below.
Here is a link to the book. This question is about the section between the end of page 6 to the start of page 9. That section discusses the "generic nature of linearity".

Let me go through the reasoning.

Suppose there is a particle moving along the ##x##-axis with potential energy ##V(x)##.

The gradient (in our case, just the simple derivative) of ##V(x)## is a conservative force.

$$F(x)=-\frac{d}{dx}V(x)$$

Suppose the force vanishes at a point of equilibrium ##x_0=0##.

$$F(0)=-V'(0)=0$$

Expand the force in a Taylor series.

$$F(x)=-V'(x)=-V'(0)-xV''(0)-\frac{1}{2}V'''(0)x^2+\ldots\tag{1.23}$$

The first term, ##-V'(0)## vanishes by our earlier assumption.

The second term looks like Hooke's law with

$$K=V''(0)\tag{1.24}$$

The equilibrium is stable if the second derivative of the potential energy is positive, so that ##x=0## is a local minimum of potential energy..

The important point is that for sufficiently small ##x##, the third term and all subsequent terms will be much smaller than the second.

The third term is negligible if

$$|xV'''(0)|<<V''(0)\tag{1.25}$$

Typically each extra derivative will bring with it a factor of ##1/L##, where ##L## is the distance over which the potential energy changes by a large fraction.

Then (1.25) becomes

$$x<<L$$

Question 1: What is this ##L## that is mentioned?

There are only two ways that a force derived from a potential energy can fail to be approximately linear for sufficiently small oscillations about stable equilibrium.

1) Potential is not smooth (first or second derivative of potential not well defined at equilibrium point).

2) Even if the derivatives exist, it may happen that ##V''(0)=0##. In this case, to have a stable equilibrium we must have ##V'''(0)=0## as well, otherwise a small displacement in one direction or the other would grow with time. Then the next term in the Taylor expansion dominates at small ##x##, giving a force proportional to ##x^3##.

Question 2: I don't really understand this point 2). We have ##V'(0)=V''(0)=0## and so the Taylor expansion becomes

$$F(x)=-\frac{1}{2}x^2V'''(0)-\frac{1}{6}x^3V^{(4)}(x)+\ldots$$

Suppose ##V'''(0)> 0##.

Suppose that ##x<0##, that is we are at a position below the equilibrium position ##x=0##. Then, the force will be negative which means negative acceleration and the particle will move further and further away from equilibrium.

If ##V'''(0)=0## and we have the fourth term non-zero, ##-\frac{1}{6}V^{(4)}(x)x^3## then we don't have the same issue because if ##x<0## then force is positive and if ##x>0## then force is negative. Ie, the force is restoring to equilibrium.

I think this answers my question 2.
 
Last edited:
Physics news on Phys.org
I have another question about the example given to illustrate the reasoning above.

For example, consider the following potential energy

$$V(x)=E\left (\frac{L}{x}+\frac{x}{L}\right )\tag{1.27}$$

This is shown in the figure below

1715475181859.png

First of all, it is not clear to me what ##E## means in (1.27).

The minimum (at least for positive ##x##) occurs at ##x=L## so we first redefine ##x=X+L## so that

$$V(X)=E\left (\frac{L}{X+L}+\frac{X+L}{L}\right )$$

The corresponding force is

$$F(X)=E\left (\frac{L}{(X+L)^2}-\frac{1}{L}\right )\tag{1.29}$$
Shouldn't the negative sign in (1.29) be a positive sign?

We can look near ##X=0## and expand in a Taylor series

$$F(X)=-2\frac{E}{L}\left (\frac{X}{L}\right )+3\frac{E}{L}\left (\frac{X}{L}\right )^2+\ldots$$

Now the ratio of the first nonlinear term to the linear term is

$$\frac{3X}{2L}$$

which is small if ##X<<L##.
 
zenterix said:
First of all, it is not clear to me what ##E## means in (1.27).
Just some constant energy. In the context of SHM it would be related to the amplitude.
zenterix said:
Shouldn't the negative sign in (1.29) be a positive sign?
No, it is right. Try it again.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top