Understanding the Ordered Basis in Linear Algebra

Click For Summary
The discussion highlights the significance of an ordered basis in linear algebra, emphasizing that it is more than just an arbitrary arrangement of basis vectors. An ordered basis allows for unique representations of vectors in a finite-dimensional vector space, as the order affects how vectors are expressed as linear combinations. It also impacts the matrix representation of linear transformations, where changing the order of basis vectors alters the corresponding matrix entries. Specifying an ordered basis is essential for clarity and consistency in mathematical communication, as it avoids ambiguity in vector representation. Ultimately, without an ordering, a finite basis lacks practical utility in discussing vector spaces.
dmuthuk
Messages
41
Reaction score
1
Hi, I was just wondering if there is something more to the concept of an ordered basis other than the fact that it is simply a basis which is ordered. The reason I'm asking this is because I don't know why some linear algebra books consider this important enough to make the distinction. I mean, given a basis for a finite-dimensional vector space, we can always order it any way we choose. In fact, whenever we talk about a finite set in general, we automatically give it an ordering so we are able to talk about it meaningfully.
 
Physics news on Phys.org
It is just to avoid some confusion. It is used both for identification and for uniqueness. Say we have an ordered basis {v1,v2,v3}. We say each vector v may be written
v=a1v1+a2v2+a3v3. Now in speaking of v we avoid constantly making comments like with "no to basis vectors equal" and "with the basis vectors ordered as before".
 
So, in lurflurf's example we could write v as (a1, a2, a3). Using the same basis vectors but with a different order would interchange those numbers. Also, a linear transformation, from one vector space to another, can be written as matrix given a basis for each space. Of course, the matrix depends upon the basis and upon the order. Using exactly the same bases but changing the order would interchange the numbers in the matrix representation.
To use those representations, vectors as ordered n-tuples and matrices we must specify not just the basis but the order of the basis vectors.
 
Thanks. That clears it up for me. So, I guess specifying a finite basis without an ordering is not very useful. I mean, I don't even see a way to talk about any finite set without first indexing the elements and assuming the natural ordering.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K