1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Undetermined coefficient (y'' + 4y) = (x^2) +2

  1. Mar 1, 2016 #1
    1. The problem statement, all variables and given/known data
    i gt stucked here ... how to continue ? what's wrong with my working ? i found 2 values for D , whcih is wrong

    2. Relevant equations


    3. The attempt at a solution
     

    Attached Files:

    • 4.png
      4.png
      File size:
      173.1 KB
      Views:
      43
  2. jcsd
  3. Mar 1, 2016 #2

    SteamKing

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper

    Your selection of yp is confusing. It is recommended that if the RHS is a polynomial of order n, then yp = a general polynomial of order n, not order n+1.

    See:

    http://tutorial.math.lamar.edu/Classes/DE/UndeterminedCoefficients.aspx
     
  4. Mar 1, 2016 #3
    then , what is the correct yp ?

    i choose my initial yp = cX^2 + Dx + E , nut i found that the term E is similar to the A , so i multiply the initial yp with x , to get my new yp
     
  5. Mar 1, 2016 #4

    SteamKing

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper

    A and E are solitary constants. You don't need to multiply your initial choice of yp by x.
     
  6. Mar 1, 2016 #5

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Your difficulty is that your solution to the associated homogeneous equation is wrong! The associated homogeneous equation is y''+ 4y= 0 which has characteristic equation [itex]m^2+ 4= 0[/itex] with solutions 2i and -2i. You have written the characteristic equation as [itex]m^2+ 4m= 0[/itex] which has solutions m= -4 and m= 0. That would correspond to differential equation y''+ 4y'= 0.
     
  7. Mar 1, 2016 #6
    i have redo the question , i got Acos2x + Bsin2x +0.25x^2 + 3/2 , but the ans given is Acos2x + Bsin2x +0.25x^2 +3/8
     
  8. Mar 1, 2016 #7

    SteamKing

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper

    Check your arithmetic or provide your work to obtain this solution.
     
  9. Mar 1, 2016 #8
    i have attached the working in the picture uploaded above
     
  10. Mar 1, 2016 #9

    Mark44

    Staff: Mentor

    I deleted the picture you attached. It was extremely hard to read, with the top so dark it was nearly impossible to read, and portions were cut off.
    It's gone now. We would prefer that you show your work here in the input pane, rather than in a poor quality image with bad lighting and information cut off.

    I should add that you're 1 point away from a permanent ban. You should be extra careful to make sure that your posts follow the rules here.
     
  11. Mar 1, 2016 #10

    Mark44

    Staff: Mentor

    "Stucked" is not a word in English. You can get stuck or you got stuck, but you can't get "stucked."
     
  12. Mar 1, 2016 #11

    epenguin

    User Avatar
    Homework Helper
    Gold Member

    Whatever it is you can't gt it anyway. :oldbiggrin:
     
  13. Mar 1, 2016 #12

    epenguin

    User Avatar
    Homework Helper
    Gold Member

    And anyway people don't need to post the dark images we see a lot, there are apps like DocScan HD for iPad which clean them up. But anyway this is only recommended for diagrams - we don't like it for maths calculation pages in fact you have been warned so better not this type of work.
     
  14. Mar 2, 2016 #13

    epenguin

    User Avatar
    Homework Helper
    Gold Member

    If this question is meant as an in exercise in variation of parameters even though the equation can be solved in other ways then OK. But if the question is just solving the given equation then In the spirit of another post on d.e.'s I made yesterday #4 for this one too you can practically eliminate guessing and having to know stuff and you don't need variation of parameters.

    The equation to be solved is

    (D2 + 4)y = 2 + x2

    What is the RHS (D2 + 4) of?

    Well (D2 + 4)x2 = 2 + 4x2

    To get something like the RHS

    (D2 + 4)(x2/4) = ½ + x2 = (2 + x2) - 3/2

    So the d.e. can be written:

    (D2 + 4)(y - x2/4) = - 3/2

    It is not hard to find what a constant is (D2 + 4) of.

    -3/2 = (D2 + 4)(-⅜)

    So our equation is

    (D2 + 4)(y -x2/4 + ⅜) = 0

    In other words we have transformed by a systematic procedure our original non-homogeneous equation into a homogeneous (and familiar!) homogeneous one that we know how to solve.

    d2Y/dx2 = -4Y

    in a new variable Y

    Y = ( y -x2/4 + ⅜)

    I have not completed this, but we are getting the same x2/4 and ⅜ that were obtained in the other approaches, so it is looking OK.


    I think the equation of #4 can also be solved this way
     
    Last edited: Mar 2, 2016
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted