Uniformly convergent sequence proof

  • Thread starter function22
  • Start date
  • #1

Homework Statement



Let [tex]f_n(x)[/tex] be a sequence of functions that converges uniformly to f(x) on the interval [0, 1]. Show that the sequence [tex]e^{f_n(x)}[/tex] also converges uniformly to [tex]e^{f(x)}[/tex] on [0,1].

Homework Equations



The definition of uniform convergence.

The Attempt at a Solution



I tried to use the definition of uniform convergence to prove this, so I need to show that for all ε>0 there exists N≥1 for all n≥N for all x in [0,1] [tex]|e^{f_n(x)}-e^{f(x)}| < ε[/tex]. I tried to prove this from the fact that [tex]f_n(x)[/tex] converges uniformly to f(x) but I kept getting stuck and I'm not sure how to do this problem now. Can anyone help me please?
 

Answers and Replies

  • #2
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,393
181

Homework Statement



Let [tex]f_n(x)[/tex] be a sequence of functions that converges uniformly to f(x) on the interval [0, 1]. Show that the sequence [tex]e^{f_n(x)}[/tex] also converges uniformly to [tex]e^{f(x)}[/tex] on [0,1].

Homework Equations



The definition of uniform convergence.

The Attempt at a Solution



I tried to use the definition of uniform convergence to prove this, so I need to show that for all ε>0 there exists N≥1 for all n≥N for all x in [0,1] [tex]|e^{f_n(x)}-e^{f(x)}| < ε[/tex]. I tried to prove this from the fact that [tex]f_n(x)[/tex] converges uniformly to f(x) but I kept getting stuck and I'm not sure how to do this problem now. Can anyone help me please?
This seems like a promising first step:

[tex]|e^{f_n(x)} - e^{f(x)}| = e^{f(x)} |e^{f_n(x)-f(x)} - 1|[/tex]
 

Related Threads on Uniformly convergent sequence proof

Replies
5
Views
3K
  • Last Post
Replies
1
Views
1K
Replies
8
Views
2K
  • Last Post
Replies
5
Views
820
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
6
Views
1K
Replies
3
Views
2K
Top