Yet another proof I'd like to check.(adsbygoogle = window.adsbygoogle || []).push({});

Statement.Let X be a finite set. One has to show that every two metric functions d1, d2 on X are uniformly equivalent.

Proof.If X is finite, then X = {x1, ..., xn}. We have to find constants A and B such that for every x, y in X, we have d1(x, y) <= A d2(x, y) & d2(x, y) <= B d1(x, y). Let S1 = {d1(x, y) / d2(x, y) | x, y from X} and S2 = {d2(x, y) / d1(x, y) | x, y from X}. If we take A = max S1 and B = max S2, the proof is completed. (For example, take some x and y, then d1(x, y)/d2(x,y) <= K1, and so on, for every x and y in X ; if we take A = max{K1, K2, ...}, then d1(x, y)/d2(x,y) <= A holds, for all x, y. Analogous for the other condition we need.)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uniformly equivalent metrics on finite set

**Physics Forums | Science Articles, Homework Help, Discussion**