MHB Unit vector perpendicular to a plane.

Click For Summary
A unit vector in the direction of E at P(2,3,-4) was calculated as approximately 0.295a_x + 0.495a_y - 0.818a_z. For the second problem, the user explored finding a vector perpendicular to the plane defined by points M(1,-5,5), N(-2,4,0), and Q(2,3,4) using cross products of vectors formed by these points. The cross product of vectors MQ and NQ matched the answer in the user's textbook, confirming its validity. The discussion highlighted that using cross products is a valid and efficient method to find a normal vector to a plane defined by three points. The conversation concluded with an affirmation of the correctness of the cross product approach.
Drain Brain
Messages
143
Reaction score
0

Find in rectangular coordinates a unit vector which is: A. in the direction of E at P(2,3,-4)if $\overline{E}=(x^2+y^2+z^2)\left(\frac{xa_{x}}{\sqrt{y^2+z^3}}+\frac{ya_{y}}{\sqrt{x^2+z^2}}+\frac{za_{z}}{\sqrt{x^2+y^2}}\right)$; B. Perpendicular to the plane passing through M(1,-5,5), N(-2,4,0) and Q(2,3,4) and having a positive $x$ component.

I managed to solve for a.

$E=11.6a_{x}+19.46a_{y}-32.161a_{z}$ at P(2,3,-4)

then, $\overline{a_{E}}=\frac{E}{|E|}=0.295a_{x}+0.495a_{y}-0.818a_{z}$

what I did for prob B was I find all the possible cross products of the vectors defined by those 3 points given above. I get different results and one of them matched the key answer in my book. Are those results that I get from taking all the cross products of the vectors on the plane defined by the given points valid?

$\overline{MQ}\times\overline{NQ}$ by the way, this is the cross product that matched the answer in my book.

can you help me with prob B. TIA!
 
Last edited:
Physics news on Phys.org
Drain Brain said:
Find in rectangular coordinates a unit vector which is: A. in the direction of E at P(2,3,-4)if $\overline{E}=(x^2+y^2+z^2)\left(\frac{xa_{x}}{\sqrt{y^2+z^3}}+\frac{ya_{y}}{\sqrt{x^2+z^2}}+\frac{za_{z}}{\sqrt{x^2+y^2}}\right)$; B. Perpendicular to the plane passing through M(1,-5,5), N(-2,4,0) and Q(2,3,4) and having a positive $x$ component.

I managed to solve for a.

$E=11.6a_{x}+19.46a_{y}-32.161a_{z}$ at P(2,3,-4)

then, $\overline{a_{E}}=\frac{E}{|E|}=0.295a_{x}+0.495a_{y}-0.818a_{z}$

what I did for prob B was I find all the possible cross products of the vectors defined by those 3 points given above. I get different results and one of them matched the key answer in my book. Are those results that I get from taking all the cross products of the vectors on the plane defined by the given points valid?

$\overline{MQ}\times\overline{NQ}$ by the way, this is the cross product that matched the answer in my book.

can you help me with prob B. TIA!

You know that the points (1, -5, 5), (-2, 4, 0) and (2, 3, 4) lie in the plane which has equation $\displaystyle \begin{align*} a\,x + b\,y+ c\,z = d \end{align*}$, where a,b,c,d are constants. So substituting these values in gives the system of equations

$\displaystyle \begin{align*} \phantom{-}1a - 5b + 5c &= d \\ -2a + 4b + 0c &= d \\ \phantom{-}2a + 3b + 4c &= d \end{align*}$

Once you solve the system for a,b,c in terms of d, you will be able to write down a vector that is normal to the plane. Dividing by d and its length will give you a unit vector in that direction.
 
Prove It said:
You know that the points (1, -5, 5), (-2, 4, 0) and (2, 3, 4) lie in the plane which has equation $\displaystyle \begin{align*} a\,x + b\,y+ c\,z = d \end{align*}$, where a,b,c,d are constants. So substituting these values in gives the system of equations

$\displaystyle \begin{align*} \phantom{-}1a - 5b + 5c &= d \\ -2a + 4b + 0c &= d \\ \phantom{-}2a + 3b + 4c &= d \end{align*}$

Once you solve the system for a,b,c in terms of d, you will be able to write down a vector that is normal to the plane. Dividing by d and its length will give you a unit vector in that direction.

Is there other quick method than this?
what can you say about the cross product that I mentiond above? It gave me the right answer though.
 
Last edited:
Hi,

Your method was right, and even simpler, given three not collinear points in the space, you can choose two vectors between them that will generate the whole plane containing that three points, and the crossproduct will give you a perpendicular vector to the plane, and if you flip the order of the vectors into the cross product you will get the same answer but with the sign changed.
 
Hi, Fallen Angel! thanks!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
20K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
26
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K