Unit vector perpendicular to a plane.

Click For Summary
SUMMARY

The discussion focuses on finding a unit vector perpendicular to a plane defined by three points: M(1,-5,5), N(-2,4,0), and Q(2,3,4). The user successfully calculated a unit vector in the direction of vector E at point P(2,3,-4) as $\overline{a_{E}}=0.295a_{x}+0.495a_{y}-0.818a_{z}$. For the perpendicular vector, the user utilized the cross product of vectors $\overline{MQ}$ and $\overline{NQ}$, which yielded a valid result matching the answer in their textbook. The discussion confirms that using the cross product of vectors formed by the given points is a correct and efficient method to find the normal vector to the plane.

PREREQUISITES
  • Understanding of vector operations, specifically cross products.
  • Knowledge of unit vectors and their calculation.
  • Familiarity with the concept of planes in three-dimensional space.
  • Ability to solve systems of equations for determining plane equations.
NEXT STEPS
  • Study the properties and applications of cross products in vector calculus.
  • Learn how to derive the equation of a plane from three non-collinear points in 3D space.
  • Explore the calculation of unit vectors from arbitrary vectors in three dimensions.
  • Investigate alternative methods for finding normal vectors to planes, such as using gradients.
USEFUL FOR

Mathematicians, physics students, and engineers who require a solid understanding of vector mathematics, particularly in applications involving planes and three-dimensional geometry.

Drain Brain
Messages
143
Reaction score
0

Find in rectangular coordinates a unit vector which is: A. in the direction of E at P(2,3,-4)if $\overline{E}=(x^2+y^2+z^2)\left(\frac{xa_{x}}{\sqrt{y^2+z^3}}+\frac{ya_{y}}{\sqrt{x^2+z^2}}+\frac{za_{z}}{\sqrt{x^2+y^2}}\right)$; B. Perpendicular to the plane passing through M(1,-5,5), N(-2,4,0) and Q(2,3,4) and having a positive $x$ component.

I managed to solve for a.

$E=11.6a_{x}+19.46a_{y}-32.161a_{z}$ at P(2,3,-4)

then, $\overline{a_{E}}=\frac{E}{|E|}=0.295a_{x}+0.495a_{y}-0.818a_{z}$

what I did for prob B was I find all the possible cross products of the vectors defined by those 3 points given above. I get different results and one of them matched the key answer in my book. Are those results that I get from taking all the cross products of the vectors on the plane defined by the given points valid?

$\overline{MQ}\times\overline{NQ}$ by the way, this is the cross product that matched the answer in my book.

can you help me with prob B. TIA!
 
Last edited:
Physics news on Phys.org
Drain Brain said:
Find in rectangular coordinates a unit vector which is: A. in the direction of E at P(2,3,-4)if $\overline{E}=(x^2+y^2+z^2)\left(\frac{xa_{x}}{\sqrt{y^2+z^3}}+\frac{ya_{y}}{\sqrt{x^2+z^2}}+\frac{za_{z}}{\sqrt{x^2+y^2}}\right)$; B. Perpendicular to the plane passing through M(1,-5,5), N(-2,4,0) and Q(2,3,4) and having a positive $x$ component.

I managed to solve for a.

$E=11.6a_{x}+19.46a_{y}-32.161a_{z}$ at P(2,3,-4)

then, $\overline{a_{E}}=\frac{E}{|E|}=0.295a_{x}+0.495a_{y}-0.818a_{z}$

what I did for prob B was I find all the possible cross products of the vectors defined by those 3 points given above. I get different results and one of them matched the key answer in my book. Are those results that I get from taking all the cross products of the vectors on the plane defined by the given points valid?

$\overline{MQ}\times\overline{NQ}$ by the way, this is the cross product that matched the answer in my book.

can you help me with prob B. TIA!

You know that the points (1, -5, 5), (-2, 4, 0) and (2, 3, 4) lie in the plane which has equation $\displaystyle \begin{align*} a\,x + b\,y+ c\,z = d \end{align*}$, where a,b,c,d are constants. So substituting these values in gives the system of equations

$\displaystyle \begin{align*} \phantom{-}1a - 5b + 5c &= d \\ -2a + 4b + 0c &= d \\ \phantom{-}2a + 3b + 4c &= d \end{align*}$

Once you solve the system for a,b,c in terms of d, you will be able to write down a vector that is normal to the plane. Dividing by d and its length will give you a unit vector in that direction.
 
Prove It said:
You know that the points (1, -5, 5), (-2, 4, 0) and (2, 3, 4) lie in the plane which has equation $\displaystyle \begin{align*} a\,x + b\,y+ c\,z = d \end{align*}$, where a,b,c,d are constants. So substituting these values in gives the system of equations

$\displaystyle \begin{align*} \phantom{-}1a - 5b + 5c &= d \\ -2a + 4b + 0c &= d \\ \phantom{-}2a + 3b + 4c &= d \end{align*}$

Once you solve the system for a,b,c in terms of d, you will be able to write down a vector that is normal to the plane. Dividing by d and its length will give you a unit vector in that direction.

Is there other quick method than this?
what can you say about the cross product that I mentiond above? It gave me the right answer though.
 
Last edited:
Hi,

Your method was right, and even simpler, given three not collinear points in the space, you can choose two vectors between them that will generate the whole plane containing that three points, and the crossproduct will give you a perpendicular vector to the plane, and if you flip the order of the vectors into the cross product you will get the same answer but with the sign changed.
 
Hi, Fallen Angel! thanks!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
20K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
26
Views
2K