Units of the given potential box

Click For Summary
The discussion revolves around calculating the tunneling probability for a car with a mass of 1 ton attempting to overcome a barrier of 1 meter height and 3 meters thickness. The key equation for tunneling probability is provided, but confusion arises regarding the appropriate units for energy, specifically whether to use Joules. It is confirmed that energy should indeed be in Joules, leading to calculations where the potential barrier height is set to 1 J and the car's energy to 0.5 J. The participant encounters issues with the calculations, particularly with the behavior of the sinh function at extreme values, leading to conflicting conclusions about the tunneling probability being nearly zero or erroneously exceeding one. The discussion highlights the complexities of quantum tunneling in practical scenarios.
phenomenologic
Messages
6
Reaction score
0

Homework Statement


A car (particle) with mass m = 1 t drives into a barrier with a height of 1 m and a thickness of 3 m. The kinetic energy shall be sufficient to get classically over a barrier with half of the height. Derive an equation for the tunnelling probability. What is the probability to tunnel through the barrier?

Homework Equations


Tunneling probability is given by

(i) T = (|A'|/|A|)^2 = (1−E/Vo)/[1 − E/Vo + (Vo/4E) sinh2(bα] ; where

α = √[2m(Vo − E)]/(h/2π) , b=3 m the barrier thickness, Vo: barrier potentail and E: particle's (car's) energy.


This is an experimental physics homework. So I should be getting some numbers at the end. I have the equation (i) and I know how to use it. But, I'm not sure what "the potential barrrier to having a height of 1 m" mean unit-wise. In other words, I don't know which units I should use for the energy while calculating α? Feels like I should be using Joules but it's a just an intiution. If so, why?

Apologies for not being able to use LaTeX.
 
Physics news on Phys.org
Hello pheno, :welcome:

In SI energy is in Joules. Doesn't give a very high speed, but I think that's what the composer of the exercise means.
 
So you suggest I use Vo = 1 J? If I do that, I will get

bα = b*√[2m(Vo − E)]/(h/2π) = 3√(2*1000*(1-1/2)/(1.054*10^-34)) ≈ 10^36. With Vo = 1 J, E = 0.5 J the equation (i) becomes

T=1/(sinh(bα))^2.

New problems arise:
1) WolframAlpha didn't calculate (sinh(10^36))^-2 so I did a Taylor expansion (just to get an idea about the value I should have):

(sinh(bα))^-2 = (bα + (bα)^3/3! +o(5))^-2 ≈ 10^-72 ≈ 0.

This could have been okay I guess, saying the probabilty of the car to tunnel is nearly zero.

2) However when I do the following to check my conclusion, I get something completely different.

For bα>10, we can approximate sinh(bα) = (1/2)(e^bα - e^-bα) ≈ (1/2)e^bα. Then 1/(sinh(bα))^2 ≈ 1/((1/4)e^(2bα)) = 4*e^(-2bα) = 4* e^(-2*10^36) ≈ 4.

This is clearly wrong, since T cannot be bigger then one. Hence, I'm stuck again.
 
Hint: mgh
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
8K
  • · Replies 5 ·
Replies
5
Views
563
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K