MHB Upper and Lower Linits (lim sup and lim inf) - Sohrab Proposition 2.2.39 (b) ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
The discussion centers on proving Proposition 2.2.39 (b) from Houshang H. Sohrab's "Basic Real Analysis," focusing on upper and lower limits in the context of monotone sequences. It is established that a monotone non-decreasing sequence \( u_n \) converges to a limit \( L_u \), while a monotone non-increasing sequence \( v_n \) converges to \( L_v \), with the condition \( u_n \leq v_n \) for all \( n \). The proof involves demonstrating that if \( L_u - L_v > 0 \), it leads to a contradiction by showing that the sequences would intersect, violating their monotonicity. The discussion emphasizes the importance of the monotone convergence theorem and the properties of limits in this context. Overall, the proof illustrates the relationship between the limits of bounded monotone sequences.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Houshang H. Sohrab's book: "Basic Real Analysis" (Second Edition).

I am focused on Chapter 2: Sequences and Series of Real Numbers ... ...

I need help with the proof of Proposition 2.2.39 (b)Proposition 2.2.39 (plus definitions of upper limit and lower limit ... ) reads as follows:
View attachment 9244
Can someone please demonstrate a formal and rigorous proof of Part (b) of Proposition 2.2.39 ...Help will be appreciated ... ...

Peter
 

Attachments

  • Sohrab - Proposition 2.2.39 ...  .png
    Sohrab - Proposition 2.2.39 ... .png
    50.2 KB · Views: 152
Physics news on Phys.org
I presume you know monotone convergence theorem...

$u_n$ is a monotone non-decreasing sequence and the sequence is bounded, so it has a limit $L_u$
$v_n$ is a monotone non-increasing sequence and is bounded so it has a limit $L_v$

but for all $n$
$u_n \leq v_n$
by construction hence passing limits,
$L_u \leq L_v$
(This is another basic property of limits... if you aren't familiar, argue by contradiction that $L_u - L_v = c \gt 0$, now select something easy, say $\epsilon := \frac{c}{10}$ which implies there is some $N$ such that for all $n\geq N$ in each sequence (a slightly more careful approach is $N =\max\big(N_v, N_u\big)$)

you have
====
$\vert u_n - L_v\vert \lt \epsilon$
edit: to cleanup a typo, this should have said: $\vert u_n - L_u\vert \lt \epsilon$ . I had the wrong subscript.
====
and $\vert v_n - L_v\vert \lt \epsilon$ but this implies $u_n \gt v_n$ which is a contradiction -- sketching this out is best... it implies that $v_n \lt L_v + \frac{1}{10}c \lt L_v + \frac{9}{10}c = L_v + c - \frac{1}{10}c = L_u- \frac{1}{10}c \lt u_n$ )
 
Last edited:
steep said:
I presume you know monotone convergence theorem...

$u_n$ is a monotone non-decreasing sequence and the sequence is bounded, so it has a limit $L_u$
$v_n$ is a monotone non-increasing sequence and is bounded so it has a limit $L_v$

but for all $n$
$u_n \leq v_n$
by construction hence passing limits,
$L_u \leq L_v$
(This is another basic property of limits... if you aren't familiar, argue by contradiction that $L_u - L_v = c \gt 0$, now select something easy, say $\epsilon := \frac{c}{10}$ which implies there is some $N$ such that for all $n\geq N$ in each sequence (a slightly more careful approach is $N =\max\big(N_v, N_u\big)$)

you have $\vert u_n - L_v\vert \lt \epsilon$ and $\vert v_n - L_v\vert \lt \epsilon$ but this implies $u_n \gt v_n$ which is a contradiction -- sketching this out is best... it implies that $v_n \lt L_v + \frac{1}{10}c \lt L_v + \frac{9}{10}c = L_v + c - \frac{1}{10}c = L_u- \frac{1}{10}c \lt u_n$ )
Thanks for the help, steep ...

Just reflecting on what you have written...

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K