Upper end of nucleon overtones

  • Context: Undergrad 
  • Thread starter Thread starter snorkack
  • Start date Start date
  • Tags Tags
    Nucleon
Click For Summary
SUMMARY

The discussion centers on the spectrum of first generation resonances in particle physics, specifically focusing on nucleon overtones and their classification based on experimental evidence. The Particle Data Group (PDG) lists discovered particles, with varying degrees of certainty indicated by star ratings, highlighting that higher energy resonances are theoretically possible but challenging to observe. The conversation emphasizes that the current limitations in discovering more massive resonances are primarily due to funding and technological constraints rather than intrinsic barriers. Key resonances discussed include N(2600) and N(1990), with questions raised about their classification and the criteria for determining their existence.

PREREQUISITES
  • Understanding of particle physics and resonance theory
  • Familiarity with the Particle Data Group (PDG) classification system
  • Knowledge of nucleon properties and spin classifications
  • Experience with experimental methods in high-energy physics
NEXT STEPS
  • Research the latest findings on nucleon resonances from the Particle Data Group (PDG)
  • Explore advanced experimental techniques for detecting high-energy particles
  • Study the implications of resonance width and cross-section on particle classification
  • Investigate the theoretical frameworks predicting the existence of higher mass excitations
USEFUL FOR

Particle physicists, researchers in high-energy physics, and students studying nucleon resonances will benefit from this discussion, particularly those interested in the classification and discovery of new particles.

snorkack
Messages
2,388
Reaction score
536
The spectrum of first generation resonances, counting Δ but including only 4 and 3 star particles (the latter in italics) goes:
p(938)1/2+
n(940)1/2+

Δ(1230)3/2+
N(1440)1/2+
N(1520)1/2-
N(1535)1/2-
Δ(1600)3/2+
Δ(1620)1/2-
N(1650)1/2-
N(1675)5/2-
N(1680)5/2+
Δ(1700)3/2-
N(1700)3/2-
N(1710)1/2+
N(1720)3/2+
N(1875)3/2-
N(1880)1/2+

N(1895)1/2-
N(1900)3/2+
Δ(1900)1/2-
Δ(1905)5/2+
Δ(1910)1/2+
Δ(1920)3/2+
Δ(1930)5/2-

Δ(1950)7/2+
N(2060)5/2-
N(2100)1/2+
N(2120)3/2-

N(2190)7/2-
Δ(2200)7/2-
N(2220)9/2+
N(2250)9/2-
Δ(2420)11/2+
N(2600)11/2-

So, the series terminates around 2500 MeV.
What prevents existence of higher energy resonances?
 
  • Like
Likes   Reactions: ohwilleke
Physics news on Phys.org
PDG lists discovered particles only, with various degrees of certainty indicated by stars. There might be higher excited states but if they are wide (short-living) they can be impossible to find experimentally. If they are too wide it's questionable if we can talk about their existence as separate states at all.
 
  • Like
Likes   Reactions: Astronuc, vanhees71 and ohwilleke
snorkack said:
\What prevents existence of higher energy resonances?

Nothing.

In theory, higher energy resonances are possible, although hard to see. But, as @mfb correctly notes, "PDG lists discovered particles only" and those are the ones that we've discovered so far.

As @mfb also correctly notes, there might at some point be circumstances in which something intrinsically limits the possibility of discovering a more massive resonance. But there is no good reason to think that the current limit is anything more than a function of how much money we've spent so far on experiments and instrumentation designed to see it. If we spent another 500 billion Euros on a bigger and better collider than the LHC we would almost surely see at least a few higher mass excitations than we have so far, and would almost certainly verify or rule out some of the one or two star resonances seen so far.
 
A mistake in my first post - wrong spin for one.
For example, the nucleons with lowest energy for a given spin:
p(938)1/2+****
N(1520)3/2-****
N(1675)5/2-****
N(1990)7⁄2+**

N(2220)9/2+****
N(2600)11/2-***
N(2700)13⁄2+**
So, looking at the series - what in the known properties makes the N(2600) a *** particle, and N(1990) and N(2700) ** particles? Large width compared to the **** resonances like N(2220)9/2+? Low cross-section for formation? Why is there no observed N with spin 15/2, not even *? Can the mass, resonance width and formation cross-section of a nucleon of 15/2 spin be predicted?
 
  • Like
Likes   Reactions: ohwilleke
snorkack said:
4 and 3 star particles
If one were to consider two star (**), then one would note higher energy resonances.
** = evidence of existence is fair.

Isn't it a bit arbitrary to consider only **** and ***, which means "Existence is certain" or "Existence is very likely"? If one considers the ** entries, then one would observe ∆(2950) 15/2+, but the existence is fair (**). Ostensibly, there is some theoretical basis. So, to increase it to ***, what experimental evidence is needed?

From 2019 - https://pdg.lbl.gov/2019/reviews/rpp2019-rev-n-delta-resonances.pdf
compare to 2006 - https://www.jlab.org/conferences/Nstar/talks/Capstick.pdf (slides 9 and 13). Also see, cautionary notes on Slides 15 and 16.

Slide 15 of Capstick's 2006 presentation - "“In the search for ‘missing’ quark-model states, indications of new structures occasionally are found. Often these are associated (if possible) with the one- and two-star states listed in Table 1. We caution against this: The status of the one-and two-star states found in the Karlsruhe-Helsinki (KH80) and Carnegie-Mellon/Berkeley (CMB80) fits is now doubtful.”"

A seemingly more skeptical tone is expressed on Slide 16 - "1* states are a dream, 2* states are a fantasy," which is attributed to Steve Dytman, 2005

See also Capstick, Slide 21
 
  • Like
Likes   Reactions: ohwilleke

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 50 ·
2
Replies
50
Views
10K